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Module I (8 Hours) 
Introduction: Scope of the subject, elastic, plastic and visco-elastic deformation. Deformation behavior: 
Tensile and compression testing, effect of temperature and strain rate Continuum mechanics: Concepts of 
stress and strain in 3D stress and strain tensor,  

Module II (8 Hours) 
Principal stresses and strains and principal axes, mean stress, stress deviator, maximum shear, equilibrium 
of stresses, equations of compatibility. Elastic behavior of materials: Constitutive equations in elasticity for 
isotropic and anisotropic materials, strain energy, elastic stiffness and compliance tensor,  

Module III (8 Hours) 
Effect of crystal structure on elastic constants. Plastic response of materials-a continuum approach: 
classification of stress-strain curves, yield criteria. Microscopic basis of plastic deformation: Elements of 
dislocation theory, movement of dislocation, elastic properties of dislocation. 

Module IV (8 Hours) 
Intersection of dislocation, dislocation reactions in different crystal structures, origin and multiplication of 
dislocations. Plastic deformation of single crystals: Critical resolved shear stress, deformation by twinning, 
deformation band and kink band, strain hardening of single crystal; stress-strain curves of fcc, bcc and hcp 
materials. 

Module V (8 Hours) 
Plastic deformation of polycrystalline materials: Role of grain boundaries in deformation, strengthening by 
grain boundaries, yield point phenomenon, strain ageing, strengthening by solutes, precipitates, 
dispersoids and fibres. Deformation in non-metallic materials: structure and deformation of polymers, 
concept Super lattice dislocations in inter metallics, and concept of charge associated with dislocations in 
ceramics. 
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Deformation Behavior of Materials 



LECTURE-1 

  

Mechanical metallurgy is the area of knowledge which deals with the behavior and 

response of metals to applied forces.  It will mean different things to different 

persons 

•  Mechanical properties of metals or mechanical testing 

• The plastic working and shaping of metals 

• Theoretical aspects of the field, which merge with metal physics and physical 

metallurgy 

• Mechanical metallurgy is closely allied with applied mathematics and applied 

mechanics 



Continued… 
  

 Mechanical metallurgy is the area of metallurgy which is concerned primarily with 

the response of metals to forces or loads. It is necessary to know something about 

the limiting values which can be withstood without failure. 

•  A continuous body is one which does not contain voids or empty spaces of any 

kind.  

• A body is homogeneous if it has identical properties at all points. 

• A body is considered to be isotropic with respect to some property when that 

property does not vary with direction or orientation.  

• A property which varies with orientation with respect to some system of axes is 

said to be anisotropic. 



Continued… 
 

 

 
 

 

ELASTIC AND PLASTIC BEHAVIOR 

• The recovery of the original dimensions of a deformed body when the load is 

removed is known as elastic behavior. 

• The limiting load beyond which the material no longer behaves elastically is the 

elastic limit. 

• If the elastic limit is exceeded, the body will experience a permanent set or 

deformation when the load is removed. A body which is permanently deformed 

is said to have undergone plastic deformation. 

• Viscoelastic materials refers those materials which show the material behavior 

in between both solid and liquid phase. 



Continued… 

Ref: https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_04_m.pdf 

https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_04_m.pdf


Continued… 

Ref- https://www.slideserve.com/Albert_Lan/c07f01 

https://www.slideserve.com/Albert_Lan/c07f01


Continued… 
 

 

 
 

 

Hooke's law:  

For most materials, as long as the load does not exceed the elastic limit, the 

deformation is proportional to the load. This relationship is known as Hooke's law; 

it is more frequently stated as σ .  

• However, it does not necessarily follow that all materials which behave 

elastically will have a linear stress-strain relationship. Rubber is an example of a 

material with a nonlinear stress-strain relationship that still satisfies the 

definition of an elastic material. 

AVERAGE STRESS AND STRAIN 

 A load P is applied to one end of the bar, and the gage length undergoes a 

slight increase in length and decrease in diameter. The distance between the gage 

marks has increased by an amount δ, called the deformation.  The average linear 

strain e is the ratio of the change in length to the original length. 



Continued… 

• Strain is a dimensionless quantity. 

  𝑒 =
𝛿

𝐿0
= 
∆𝐿

𝐿0
=
𝐿−𝐿𝑎

𝐿0
 

 

 

• The external load P is balanced by the internal resisting force 𝜎. 𝑑𝐴, where σ is 

the stress normal to the cutting plane and A is the cross-sectional area of the bar. 

The equilibrium equation is 

      𝑃 = 𝜎. 𝑑𝐴 

      𝑃 =  𝜎. 𝑑𝐴 = 𝜎. 𝐴 

     𝜎 =
𝑃

𝐴
 



Continued… 
The elastic limit Hooke's law can be considered valid, so that the average stress is 

proportional to the average strain, 

    
𝜎

𝑒
= 𝐸 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛t 

The constant E is the modulus of elasticity, or Young's modulus. 

Elastic modulus vs Stiffness  

Elastic modulus:  

 It is a material property, so varies from material to material. 

 It is obtained as the slope of stress-strain plot. 

Stiffness: 

 It is material property that depends on geometry and modulus of material. 

 It is obtained as the slope of force-displacement plot. 



Continued… 

Ref- Guelcher, S. A., & Sterling, J. A. (2011). Contribution of bone tissue modulus to 

breast cancer metastasis to bone. Cancer Microenvironment, 4(3), 247-259. 



LECTURE-2 

TENSILE DEFORMATION OF DUCTILE METAL 

• The data obtained from the tension test are generally plotted as a stress-strain 

diagram. 

• It shows a typical stress-strain curve for a metal such as aluminum or copper.  

• The initial linear portion of the curve OA is the elastic region within which 

Hooke's law is obeyed. 

• Point A is the elastic limit, defined as the greatest stress that the metal can 

withstand without experiencing a permanent strain when the load is removed. 

• The determination of the elastic limit is quite tedious, not at all routine, and 

dependent on the sensitivity of the strain-measuring instrument.  

• For these reasons it is often replaced by the proportional limit, point A'.   



Continued… 

  

Fig. 1.3 Typical tension stress-strain curve 

• The proportional limit is the 

stress at which the stress-

strain curve deviates from 

linearity.  

• The slope of the stress-strain 

curve in this region is the 

modulus of elasticity. 

• For engineering purposes the 

limit of usable elastic 

behavior is described by the 

yield strength, point B. 



Continued… 
• The yield strength is defined as the stress which will produce a small amount of 

permanent deformation, generally equal to a strain of 0.002. This permanent 

strain, or offset, is OC. 

• Plastic deformation begins when the elastic limit is exceeded.  

• As the plastic deformation of the specimen increases, the metal becomes 

stronger (strain hardening), so that the load required extending the specimen 

increases with further straining. 

• Eventually the load reaches a maximum value. The maximum load divided by 

the original area of the specimen is the ultimate tensile strength. 

• For a ductile metal the diameter of the specimen begins to decrease rapidly 

beyond maximum load, so that the load required continuing deformation drops 

off until the specimen fractures. 



Continued… 
DUCTILE vs BRITTLE BEHAVIOR 

• Brittle Materials: A completely brittle material would fracture almost at the 

elastic limit 

• Ductile Materials: A brittle metal, such as white cast iron, shows some slight 

measure of plasticity before fracture. 



Continued… 

• Adequate ductility is an important engineering consideration, because it allows 

the material to redistribute localized stresses. 

• It is important to note that brittleness is not an absolute property of a metal. 

• A metal such as tungsten, which is brittle at room temperature, is ductile at an 

elevated temperature.  

• A metal which is brittle in tension may be ductile under hydrostatic 

compression.  

• Furthermore, a metal which is ductile in tension at room temperature can 

become brittle in the presence of notches, low temperature, high rates of 

loading, or embrittling agents such as hydrogen. 



Continued… 

CONCEPT OF STRAIN AND THE TYPES OF STRAIN 

• The average linear strain (engineering strain) was defined as the ratio of the 

change in length to the original length of the same dimension. 

    𝑒 =
𝛿

𝐿0
= 
∆𝐿

𝐿0
=
𝐿−𝐿𝑎

𝐿0
 

       [Where,    e = average linear strain,  δ= deformation] 

• Rather than referring the change in length to the original gage length, it often 

is more useful to define the strain as the change in linear dimension divided by 

the instantaneous value of the dimension. The above equation defines the 

natural or true strain. 



Continued… 

Ref: https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_04_m.pdf 

https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_04_m.pdf


Continued… 

•  Not only will the elastic deformation of a body result in a change in length of a 

linear element in the body, but it may also result in a change in the initial angle 

between any two lines. The angular change in a right angle is known as shear 

strain. 

• Poisson’s ratio: While a tensile force in the x direction produces an extension 

along that axis, it also produces a contraction in the transverse y and z 

directions. The transverse strain has been found by experience to be a 

constant fraction of the strain in the longitudinal direction. This is known as 

Poisson's ratio, denoted by the symbol ν. 

ν = 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛=−

𝜀𝑡
𝜀𝑙

 

 



Continued… 

• For most metals the values of ν are close to 0.33. 



Continued… 



ELEMENTS OF THE THEORY OF PLASTICITY  

• The theory of plasticity deals with the behavior of materials at strains where 

Hooke's law is no longer valid. 

• Elastic deformation depends only on the initial and final states of stress and 

strain. The plastic strain depends on the loading path by which the final state is 

achieved. 

• Moreover, in plastic deformation there is no easily measured constant relating 

stress to strain as with Young's modulus for elastic deformation. 

• The phenomenon of strain hardening is difficult to accommodate within the 

theory of plasticity without introducing considerable mathematical complexity. 

• Also, several aspects of real material behavior, such as plastic anisotropy, 

elastic hysteresis, and the Bauschinger effect cannot be treated easily by 

plasticity theory. 

LECTURE-3 



THE FLOW CURVE 

• The stress-strain curve obtained by uniaxial loading, as in the ordinary tension 

test, is of fundamental interest in plasticity when the curve is plotted in terms 

of true stress and true strain. 

• A true stress-strain curve is frequently called a flow curve because it gives the 

stress required to cause the metal to flow plastically to any given strain.  

• Many attempts have been made to fit mathematical equations to this curve.  

• The most common is a power expression of the form 

𝜎 = 𝐾𝜀𝑛 

Were K is the stress at ε = 1.0 and n is the strain-hardening coefficient or the slope 

of a log-log plot of above Eq.  

Continued… 



Continued… 
• This equation can be valid only from the beginning of plastic flow to the 

maximum load at which the specimen begins to neck down. 



Continued… 

TRUE STRESS AND TRUE STRAIN 

STRESS 

Stress, σ, is defined as the intensity of 

force at a point: 

  σ = ∂F/∂ A as ∂ A → 0. 

 

If the state of stress is the same 

everywhere in a body, 

  σ = F/A.  



Continued… 
• A normal stress (compressive or tensile) is one in which the force is normal to 

the area on which it acts. With a shear stress, the force is parallel to the area 

on which it acts.  

• Two subscripts are required to define a stress. The first subscript denotes the 

normal to the plane on which the force acts and the second subscript identifies 

the direction of the force. For example, a tensile stress in the x-direction is 

denoted by σxx , indicating that the force is in the x-direction and it acts on a 

plane normal to x. For a shear stress, σxy, a force in the y-direction acts on a 

plane normal to x. 

• Because stresses involve both forces and areas, they are not vector quantities. 

Nine components of stress are needed to describe a state of stressfully at a 

point, as shown in Figure 1.1.  



Continued… 
• The stress component σyy = Fy/Ay describes the tensile stress in the y-direction. 

The stress component σzy = Fy/Az is the shear stress caused by a shear force in 

the y-direction acting on a plane normal to z. Repeated subscripts denote 

normal stresses (e.g., σxx, σyy, . . . ) whereas mixed subscripts denote shear 

stresses (e.g., σxy, σzx, . . . ). In tensor notation the state of stress is expressed as 

Where i and j are iterated over x, y, and z. Except where tensor notation is 

required, it is often simpler to use a single subscript for a normal stress and to 

denote a shear stress by τ . 



Continued… 



LECTURE-4 

STRAINS 

•  An infinitesimal normal strain is defined by the change of length, L, of a line: 

 

 

• Integrating from the initial length, Lo, to the current length, L, 

 

 

 

• This finite form is called true strain (or natural strain, logarithmic strain). 

Alternatively, engineering or nominal strain, e, is defined as 

 



Continued… 
• If the strains are small, then engineering and true strains are nearly equal. 

Expressing ε = ln(L/Lo) = ln(1 + e) as a series expansion, ε = e − e2/2 + e3/3!− ·, 

so as e→ 0, ε →e. This is illustrated in the following example. 

 

 

Example problem: Calculate the ratio e/ε for several values of e. 

Solution: e/ε = e/ln (1 + e). Evaluating: 

For e = 0.001, e/ε = 1.0005;  For e = 0.01, e/ε = 1.005; 

For e = 0.02, e/ε = 1.010;   For e = 0.05, e/ε = 1.025; 

For e = 0.10, e/ε = 1.049;   For e = 0.20, e/ε = 1.097; 

For e = 0.50, e/ε = 1.233. 



Continued… 

Note that the difference between e and ε is less than 1% for e < 0.02. There are 

several reasons that true strains are more convenient than engineering strains. 

• True strains for equivalent amounts of deformation in tension and 

compression are equal except for sign. 

• True strains are additive. For a deformation consisting of several steps, the 

overall strain is the sum of the strains in each step. 

• The volume change is related to the sum of the three normal strains. For 

constant volume, εx + εy + εz = 0. 

These statements are not true for engineering strains, as illustrated in the 

following examples. 



Continued… 
STRESS-STRAIN CURVES: 

 

 

Typical engineering stress– strain curve for a ductile material 



Continued… 

The low-strain region of the stress–strain 
curve for a ductile material 



Continued… 

Inhomogeneous yielding of low carbon steel 



Continued… 

Inhomogeneous yielding of a linear polymer 



Continued… 

After a maximum on the stress–strain curve, deformation localizes to form a neck. 



LECTURE-5 

TRUE STRESS AND STRAIN 

TENSION TEST: 

 The true stress is defined as 

𝜎 =
𝐹

𝐴
 

Where, A is the instantaneous cross-sectional area corresponding to the force F. 

Before necking begins, the true strain is given by 

𝜀 = 𝑙𝑛 𝐿 𝐿0  

The engineering stress is defined as the force divided by the original area, s=F/Ao, 

and the engineering strain is defined as the change in length divided by the 

original length, e=∆L/Lo.  



Continued… 

As long as the deformation is uniform along the gauge length, the true stress and 

true strain can be calculated from the engineering quantities. With constant 

volume, LA=Lo Ao, so that 

𝐴0
𝐴
=
𝐿

𝐿0
 

and thus Ao/A=1+e Rewriting  above Equation  as σ =(F/Ao)(Ao/A) and 

substituting Ao/A=1+e and s=F/Ao, 

𝜎 = 𝑠 1 + 𝑒  

Substitution of L/Lo =1+e, true strain becomes 

𝜀 = 𝑙𝑛 1 + 𝑒  



Continued… 
COMPRESSION TEST: 

The shape of the engineering stress–strain curve in compression can be predicted 

from the true stress–strain curve in tension, assuming that absolute values of true 

stress in tension and compression are the same at the same absolute strain 

values.  

 

 

 

 

 

 

 

 
Comparison of engineering and true stress–strain curves.  



Continued… 

It must be remembered that both the stress and strain are negative in 

compression. The engineering stress and strain for compression test becomes, 

𝑒𝑐𝑜𝑚𝑝 = 𝑒𝑥𝑝 𝜀 − 1 

𝑠𝑐𝑜𝑚𝑝 = 𝜎 1 + 𝑒  

Before necking, a point on the true stress–strain curve (σ–ε) can be constructed 

from a point on the engineering stress–strain curve (s–e). After necking, the cross-

sectional area at the neck must be measured to find the true stress and strain. 



Continued… 

Stress–strain relations in compression for a ductile material.  



Continued… 

• Each point σ, ε on the true stress–true strain curve corresponds to a point s, e 

on the engineering stress–strain curve. The arrows connect these points. 

• The engineering stress-strain curve does not give a true indication of the 

deformation characteristics of a material because it is based entirely on the 

original dimensions of the specimen, and these dimensions change 

continuously during the test. 

𝑒 =
∆𝐿

𝐿0
=
1

𝐿0
 𝑑𝐿
𝐿

𝐿0

 

• This definition of strain is satisfactory for elastic strains where ∆L is very 

small. 



Continued… 

• However, in plastic deformation the strains are frequently large, and during the 

extension the gage length changes considerably. 

• Ludwik first proposed the definition of true strain, or natural strain, ε, which 

obviates this difficulty. 

• In this definition of strain the change in length is referred ·to the instantaneous 

gage length, rather than to the original gage length. 

    𝜀 =  
𝐿1−𝐿0

𝐿0
+
𝐿2− 𝐿1
𝐿1

+
𝐿3− 𝐿2

𝐿2
+⋯  

 Or 

             𝜀 =  
𝑑𝐿

𝐿

𝐿

𝐿0
= 𝑙𝑛

𝐿

𝐿0
 



Continued… 
• The relationship between true strain and conventional linear strain follows 

from previous relationship. 

𝑒 =
∆𝐿

𝐿0
=
𝐿 − 𝐿0
𝐿0

=
𝐿

𝐿0
− 1 ⇒ 𝑒 + 1 =

𝐿

𝐿0
 

𝜀 = 𝑙𝑛
𝐿

𝐿0
= ln(𝑒 + 1) 

• Values of true strain and conventional linear strain are given for comparison: 

 

 

 

• True stress is the load at any instant divided by the cross-sectional area over 

which it acts.  

 

 



Continued… 

• The engineering stress, or conventional stress, is the load divided by the 

original area. 

• True stress will be denoted by the familiar symbol σ, while engineering stress 

will be denoted by s. 

• True stress    𝜎 =  
𝑃

𝐴
 

• Engineering stress  𝑆 =  
𝑃

𝐴0
 

• The true stress may be determined from the engineering stress as follows: 

𝜎 =  
𝑃

𝐴
=
𝑃

𝐴0
×
𝐴0
𝐴

 

 



Continued… 

But, by the constancy-of-volume relationships 

𝐴0
𝐴
=  
𝐿

𝐿0
= 𝑒 + 1 

From above eq.: 

𝜎 =
𝑃

𝐴0
 ×
𝐴0
𝐴
= 𝑆 𝑒 + 1  



LECTURE-6 

HYDROSTATIC AND DEVIATOR COMPONENTS OF STRESS: 

The total stress tensor can be divided into a hydrostatic or mean stress tensor 𝜎𝑚, 

which involves only pure tension or compression, and a deviator stress tensor 𝜎𝐼𝐽
′ , 

which represents the shear stresses in the total state of stress. 

 

 

Resolution of total stress into hydrostatic stress and stress deviator 



Continued… 
• The hydrostatic component of the stress tensor produces only elastic volume 

changes and does not cause plastic deformation. Experiment shows that the 

yield stress of metals is independent of hydrostatic stress, although the 

fracture strain is strongly influenced by hydrostatic stress. 

• Because the stress deviator involves the shearing stresses, it is important in 

causing plastic deformation 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
′ +
1

3
𝛿𝑖𝑗𝜎𝑘𝑘 

• We shall see that the stress deviator is useful in formulating theories of 

yielding. 

𝜎𝑚 =
𝜎𝑘𝑘
3
=
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3
=
𝜎1 + 𝜎2 + 𝜎3
3

 



Continued… 
The decomposition of the stress tensor is given by 

 

 

 

 

 

 

 

ELASTIC STRESS-STRAIN RELATIONS 

• Equations of this nature are called constitutive equations. In this chapter we 

shall consider only constitutive equations for elastic solids. Moreover, initially 

we shall only consider isotropic elastic solids. 



Continued… 
• The elastic stress is linearly related to elastic strain by means of the modulus of 

elasticity (Hooke's law). 

𝜎𝑥 = 𝐸𝜀𝑥 

 Where E is the modulus of elasticity in tension or compression 

Poisson's ratio 

• While a tensile force in the x direction produces an extension along that axis, it 

also produces a contraction in the transverse y and z directions.  

• The transverse strain has been found by experience to be a constant fraction of 

the strain in the longitudinal direction. This is known as Poisson's ratio, 

denoted by the symbol ν. 

• Only the absolute value of ν is used in calculations. For most metals the values 

of v are close to 0.33. 

 



Continued… 
Stress-strain relations for a 3D state of stress 

• The elastic stresses are small and the material is isotropic, we can assume that 

normal stress ox does not produce shear strain on the x, y, or z planes and that 

a shear stress t does not produce normal strains on the x, y, or z planes. So 

 

 



Continued… 
By superposition of the components of strain in the x, y, and z directions 

 

 

 

 

 

• The shearing stresses acting on the unit cube produce shearing strains 

 

 

• The proportionality constant G is the modulus of elasticity in shear, or the 

modulus of rigidity. Values of G are usually determined from a torsion test. 



Continued… 
• Still another elastic constant is the bulk modulus or the volumetric modulus 

of elasticity K. The bulk modulus is the ratio of the hydrostatic pressure to the 

dilatation that it produces. 

 

 Where -p is the hydrostatic pressure and 
1

 𝛽 
is the compressibility. 

• Many useful relationships may be derived between the elastic constants E, G, 

γ, K. For example, if we add up the three equations 

 

 

• The term on the left is the volume strain ∆, and the term on the right is 3𝜎𝑚. 

 Or 



Continued… 
• Another important relationship is the expression relating E, G, and 𝛾  

 

 

• Many other relationships can be developed between these four isotropic 
elastic constants 

 

 

 

STRAIN ENERGY 

• The elastic strain energy U is the energy expended by the action of external 

forces in deforming an elastic body.  

• Essentially all the work performed during elastic deformation is stored as 

elastic energy, and this energy is recovered on the release of the applied 

forces. 



Continued… 
• Energy (or work) is equal to a force multiplied by the distance over which it 

acts.  

• In the deformation of an elastic body, the force and deformation increase 

linearly from initial values of zero so that the average energy is equal to one-

half of their product. 

• This is also equal to the area under the load-deformation curve. 

𝑈 =
1

2
𝑃𝛿 

• For an elemental cube that is subjected to only a tensile stress along the x axis, 

the elastic strain energy is given by 



Continued… 
• The strain energy per unit volume or strain energy density U0 is given by 

 

 

 

• By the same type of reasoning, the strain energy per unit volume of an 

element subjected to pure shear is given by 



LECTURE-7 
CONTINUUM MECHANICS  

It should be recognized that the equations describing the state of stress or strain 

in a body are applicable to any solid continuum, whether it be an elastic or plastic 

solid or a viscous fluid. Indeed, this body of knowledge is often called continuum 

mechanics. The equations relating stress and strain are called constitutive 

equations because they depend on the material behavior. 

 

For example,   

• In a thin plate loaded in the plane of the plate there will be no stress acting 

perpendicular to the surface of the plate. The stress system will consist of two 

normal stresses 𝜎𝑥 and 𝜎𝑦 and a shear stress 𝜏𝑥𝑦. A stress condition in which 

the stresses are zero in one of the primary directions is called plane stress.  



Continued… 

• For any state of stress it is always possible to define a new coordinate system 

which has axes perpendicular to the planes on which the maximum normal 

stresses act and on which no shearing stresses act. These planes are called the 

principal planes, and the stresses normal to these planes are the principal 

stresses.  

• For two-dimensional plane stress there will be two principal stresses 𝜎1and 𝜎2 

which occur at angles that are 90° apart. For the general case of stress in 

three dimensions there will be three principal stresses𝜎1, 𝜎2 and 𝜎3. 

• According to convention, a1 is the algebraically greatest principal stress, while 

is the algebraically smallest stress. 



Continued… 
• The directions of the principal stresses are the principal axes 1, 2, and 3. 

Although in general the principal axes 1, 2, and 3 do not coincide with the 

Cartesian-coordinate axes x, y, z, for many situations that are encountered in 

practice the two systems of axes coincide because of symmetry of loading and 

deformation. 

• The specification of the principal stresses and their direction provides a 

convenient way of describing the state of stress at a point. 

State of Stress in Three Dimensions  

• The general three-dimensional state of stress consists of three unequal 

principal stresses acting at a point. This is called a tri-axial state of stress.  

• If two of the three principal stresses are equal, the state of stress is known as 

cylindrical.  



Continued… 
• While if all three principal stresses are equal, the state of stress is said to be 

hydrostatic or spherical. 

• The determination of the principal stresses for a three-dimensional state of 

stress in terms of the stresses acting on an arbitrary Cartesian-coordinate 

system is an extension of the method described for the two-dimensional case. 

• The schematic is an elemental free 

body with a diagonal plane JKL of area 

A.  

• The plane JKL is assumed to be a 

principal plane cutting through the 

unit cube; σ is the principal stress 

acting normal to the plane JKL.  



Continued… 
• Let l, m, n be the direction cosines of σ, that is, the cosines of the angles 

between σ and the x, y, and z axes. Since the free body is in equilibrium, the 

forces acting on each of its faces must balance. 

• The components of σ along each of the axes are Sx, Sy and Sz 

     𝑆𝑥 =  𝜎𝑙,   𝑆𝑦 =  𝜎𝑚  𝑆𝑧 =  𝜎𝑛 

 Area KOL = AI   Area JOK = Am   Area JOL = An 

• Taking the summation of the forces in the x direction results in 

𝜎𝐴𝑙 − 𝜎𝑥𝐴𝑙 − 𝜏𝑦𝑥𝐴𝑚 − 𝜏𝑧𝑥𝐴𝑛 = 0 

• This reduces to, 𝜎 − 𝜎𝑥 𝑙 − 𝜏𝑦𝑥𝑚− 𝜏𝑧𝑥 = 0 

• Summing the forces along the other two axes results in 

−𝜏𝑦𝑥𝑙 + 𝜎 − 𝜎𝑦 𝑚− 𝜏𝑧𝑦𝑛 = 0 

−𝜏𝑥𝑧 − 𝜏𝑦𝑧 + 𝜎 − 𝜎𝑧 𝑛 = 0 



Continued… 

• The only nontrivial solution of the force equations along three axes can be 

obtained by setting the determinant of the coefficients of l, m, and n equal to 

zero, since l, w, and n cannot all be zero. 

𝜎 − 𝜎𝑥 −𝜏𝑦𝑥 −𝜏𝑧𝑥
−𝜏𝑥𝑦 𝜎 − 𝜎𝑦 −𝜏𝑧𝑦
−𝜏𝑥𝑧 − 𝜏𝑦𝑧 𝜎 − 𝜎𝑧

= 0 

• Solution of the determinant results in a cubic equation in 𝜎. 

𝜎3 − 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 𝜎
2 + 𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦

2 − 𝜏𝑦𝑧
2 − 𝜏𝑥𝑧

2  𝜎

− 𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2 = 0 

• The three roots of the above cubic equations are the three principal stresses 

𝜎1, 𝜎2, and 𝜎3. 
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• To determine the direction with respect to the original x, y, z axes in which the 

principal stresses act, it is necessary to substitute 𝜎1, 𝜎2, and 𝜎3 each in turn 

into the three equations force equations.  

• The resulting equations must be solved simultaneously for l, m, and n with the 

help of the auxiliary relationship l2 + m2 + n2 = 1. Note that there are three 

combinations of stress components in previous cubic equation that make up 

the coefficients of the cubic equation. Since the values of these Coefficients 

determine the principal stresses, they obviously do not vary with Changes in 

the coordinate axes. Therefore, they are invariant coefficients. 

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 = 𝐼1 

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦
2 − 𝜏𝑦𝑧

2 − 𝜏𝑥𝑧
2 = 𝐼2 

𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2 = 𝐼3 



Continued… 

• The first invariant of stress 𝐼1 has been seen before for the two-dimensional 

state of stress. It states the useful relationship that the sum of the normal 

stresses for any orientation in the coordinate system is equal to the sum of the 

normal stresses for any other orientation.  

 For example 

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 = 𝜎𝑥′ + 𝜎𝑦′ + 𝜎𝑧′ = 𝜎1 + 𝜎2 + 𝜎3 



LECTURE-8 
Stress Tensor 

• Many aspects of the analysis of stress, such as the equations for the 

transformation of the stress components from one set of coordinate axes to 

another coordinate system or the existence of principal stresses, become 

simpler when it is realized that stress is a second-rank tensor quantity. Many of 

the techniques for manipulating second-rank tensors do not require a deep 

understanding of tensor calculus, so it is advantageous to learn something 

about the properties of tensors. 

• We shall start with the consideration of the transformation of a vector (a first-

rank tensor) from one coordinate system to another. 

• Consider the vector 

𝑆 = 𝑆1𝑖1 + 𝑆2𝑖2 + 𝑆3𝑖3 

 



Continued… 
When the unit vectors i1, i2, i3 are in the directions S1, S2, S3 (In accordance with 

convention and convenience in working with tensor quantities, the coordinate axes 

will be designated x1, x2, etc., where x1 is equivalent to our previous designation x, 

x2 is equivalent to the old y, etc.) 

 

 

 

 

 

 

 
Transformation of axes for a vector 
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S1, S2, S3 are the components of S referred to the axes x1, x2, x3. We now want to 

find the components of S referred to the 𝑥1
′ , 𝑥2
′ , 𝑥3
′  axes, refer above Figure. S is 

obtained by resolving S1, S2, S3 along the new direction𝑥1
′ . 

𝑆1
′ = 𝑆1 𝑐𝑜𝑠 𝑥1𝑥1

′ + 𝑆2 𝑐𝑜𝑠 𝑥2𝑥1
′ + 𝑆3 𝑐𝑜𝑠 𝑥3𝑥1

′    

Or 

𝑆1
′ = 𝑎11𝑆1 + 𝑎12𝑆2 + 𝑎13𝑆3    

Where 𝑎11 is the direction cosine between 𝑥1
′  and𝑥1, 𝑎12 is the direction cosine 

between 𝑥1
′  and 𝑥2 etc., similarly 

𝑆2
′ = 𝑎21𝑆1 + 𝑎22𝑆1 + 𝑎23𝑆3  

𝑆3
′ = 𝑎31𝑆1 + 𝑎32𝑆2 + 𝑎33𝑆3  

• We note that the leading suffix for each direction cosine in each equation is the 

same, so we could write these equations as 

𝑆1
′ =   𝑎1,𝑗𝑆𝑗

3
𝑗=1  ,  𝑆2

′ =  𝑎2,𝑗𝑆𝑗
3
𝑗=1  , 𝑆3

′ =  𝑎3,𝑗𝑆𝑗
3
𝑗=1   
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• These three equations could be combined by writing  

𝑆𝑖
′ =  𝑎𝑖,𝑗𝑆𝑗

3

𝑗=1

𝑖 = 1, 2, 3 =  𝑎𝑖1𝑆1 + 𝑎𝑖2𝑆2 + 𝑎𝑖 3𝑆3   

• Still greater brevity is obtained by writing the above equation in the Einstein 

suffix notation as  

𝑆𝑖
′ = 𝑎𝑖𝑗𝑆𝑗  

• The suffix notation is a very useful way of compactly expressing the systems of 

equations usually found in continuum mechanics. In the above equation, it is 

understood that when a suffix occurs twice in the same term (in this case the 

suffix j), it indicates summation with respect to that suffix. Unless otherwise 

indicated, the summation of the other index is from 1 to 3.  
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• In the above example, I is a free suffix and it is understood that in the expanded 

form there is one equation for each value of i. The repeated index is called a 

dummy suffix. Its only purpose is to indicate summation. 

• Exactly the same three equations would be produced if some other letter were 

used for the dummy suffix, for example, 𝑆𝑖
′ = 𝑎𝑖𝑟𝑆𝑗 would mean the same thing 

as previous equation. 

• The complete determination of the state of stress at a point in a solid requires 

the specification of nine components of stress on the orthogonal faces of the 

element at the point.  

• A vector quantity only requires the specification of three components. 

Obviously, stress is more complicated than a vector. 



Continued… 
• Stress Tensor 𝜏𝑖,𝑗: The stress (force per unit area) at a point in fluid needs nine 

components to be completely specified, since each component of the stress 

must be depend not only by the direction in which it acts but also the 

orientation of the surface upon which it is acting.  

Shear stresses on an infinitesimal cube whose surface are parallel to the 
coordinate system 
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• The first index specifies the direction in which the stress component acts, and 

the second identifies the orientation of the surface upon which it is acting. 

Therefore, the 𝑖𝑡ℎ component of the force acting on a surface whose outward 

normal points in  the 𝑗𝑡ℎ direction is 𝜏𝑖,𝑗. 

• An example of surface forces is the shear force and an example of volumetric 

forces is the gravity force. At equilibrium, the surface forces and volumetric 

forces are in balance.  

• As the body gets smaller, the mass of the body goes to zero, which makes the 

volumetric forces equal to zero and leaving the sum of the surface forces equal 

zero. So, as 𝛿 → 0;   𝐹𝑖𝑎𝑙𝑙 4 𝑓𝑎𝑐𝑒𝑠 = 0 for i = 1, 2, 3.  

 



Continued… 
FLOW CURVES IN DUCTILE MATERIALS: 

• The true stress-strain curve for a typical ductile metal, such as aluminum, is 

illustrated in below schematic (a). 

 

 

 

 

 

 

• Hooke's law is followed up to some yield stress 𝜎0 (The value of 𝜎0 will depend 

upon the accuracy with which strain is measured). Beyond 𝜎0, the metal 

deforms plastically. 

Typical true stress-strain curve for ductile materials 
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• Most metals strain-harden in this region, so that increases in strain require 

higher values of stress than the initial yield stress 𝜎0. 

• However, unlike the situation in the elastic region, the stress and strain are not 

related by any simple constant of proportionality. If the metal is strained to 

point A, when the load is released the total strain will immediately decrease 

from 𝜖1 to 𝜖2  by an amount 𝜎0/𝐸. 

• The strain decrease 𝜖1- 𝜖2 is the recoverable elastic strain. However, the strain 

remaining is not all permanent plastic strain. 

• Depending upon the metal and the temperature, a small amount of the plastic 

strain 𝜖2- 𝜖3 will disappear with time. This is known as anelastic behavior. 

Generally, the anelastic strain is neglected in mathematical theories of 

plasticity. 
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• Usually the stress-strain curve on unloading from a plastic strain will not be 

exactly linear and parallel to the elastic portion of the stress-strain curve (b). 

• Moreover, on reloading the curve will generally bend over as the stress 

approaches the original value of stress from which it was unloaded. With a little 

additional plastic strain the stress-strain curve becomes a continuation of what 

it would have been had no unloading taken place. The hysteresis behavior 

resulting from unloading and loading from a plastic strain is generally neglected 

in plasticity theories. 

• If a specimen is deformed plastically beyond the yield stress in one direction, 

e.g., in tension, and then after unloading to zero stress it is reloaded in the 

opposite direction, e.g., in compression, it is found that the yield stress on 

reloading is less than the original yield stress. 
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• Referring to True stress-strain curve (c), 𝜎𝑏 <𝜎𝑎. This dependence of the yield 

stress on loading path and direction is called the Bauschinger effect. 

• The Bauschinger effect is commonly ignored in plasticity theory, and it is usual 

to assume that the yield stress in tension and compression are the same. 



LECTURE-9 
YIELDING CRITERIA FOR DUCTILE MATERIALS:  

• The problem of deducing mathematical relationships for predicting the 

conditions at which plastic yielding begins when a material is subjected to any 

possible combination of stresses is an important consideration in the field of 

plasticity. 

• The yielding criteria are essentially empirical relationships. However, a yield 

criterion must be consistent with a number of experimental observations, the 

chief of which is that pure hydrostatic pressure does not cause yielding in a 

continuous solid. 

• As a result of this, the hydrostatic component of a complex state of stress does 

not influence the stress at which yielding occurs.  
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• Therefore, we look for the stress deviator to be involved with yielding. 

Moreover, for an isotropic material, the yield criterion must be independent of 

the choice of axes, i.e., it must be an invariant function. 

• These considerations lead to the conclusion that the yield criteria must be 

some function of the invariants of the stress deviator. At present there are two 

generally accepted criteria for predicting the onset of yielding in ductile metals. 

I. Von Mises' or Distortion-Energy Criterion 

II. Maximum-Shear-Stress or Tresca Criterion 

VON MISES' OR DISTORTION-ENERGY CRITERION: 

Von Mises (1913) proposed that yielding would occur when the second invariant of 

the stress deviator 𝐽2 exceeded some critical value. 

𝐽2 = 𝑘
2 
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Where,   𝐽2 = 
1

6
 𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2  +  𝜎3 − 𝜎1

2  

• To evaluate the constant k and relate it to yielding in the tension test, we realize 

that at yielding in uniaxial tension 𝜎1 =𝜎0, 𝜎2 = 𝜎3 = 0 

𝝈𝟎
𝟐 + 𝝈𝟎 

𝟐 = 𝟔𝒌𝟐 

𝝈𝟎 = 𝟑 𝒌=> 𝑘 = 𝜎0 3  

Substituting 𝐽2 and k in stress deviator equation in previous page results in the 

usual form of the Von Mises' yield criterion 

𝝈𝟎 = 
𝟏

𝟐
 𝝈𝟏 − 𝝈𝟐

𝟐 + 𝝈𝟐 − 𝝈𝟑
𝟐  +  𝝈𝟑 − 𝝈𝟏

𝟐
𝟏
𝟐  
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Or, by considering both normal and shear stress as follows the  equation  (2-61) in 

[Dieter G. E., Mechanical metallurgy]  

𝝈𝟎 = 
𝟏

𝟐
 𝝈𝒙 − 𝝈𝒚

𝟐
+ 𝝈𝒚 − 𝝈𝒛

𝟐
 +  𝝈𝒛 − 𝝈𝒙

𝟐 + 𝝉𝒙𝒚
𝟐 + 𝝉𝒚𝒛

𝟐 + 𝝉𝒙𝒛
𝟐
𝟏
𝟐 

 

So the above two Equations predicts that yielding will occur when the differences 

of stresses on the right side of the equation exceed the yield stress in uniaxial 

tension 𝜎0. 

To identify the constant k can be identified by considering the state of stress in 

pure shear, as is produced in a torsion test. 

𝜎1 = − 𝜎3 =  𝜏,  𝜎2 = 0 

At yielding,       𝜎1
2 + 𝜎1

2 +  4 𝜎1
2 = 6 𝑘2 

𝜎1 = 𝑘 
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• So that k represents the yield stress in pure shear (torsion). Therefore, the Von 

Mises' criterion predicts that the yield stress in torsion will be less than in 

uniaxial tension according to 

𝑘 =  
1

3
 𝜎0 = 0.577𝜎0 

• To summarized, note that the Von Mises’ yield criterion implies that is not 

depend on any particular normal stress or shear stress, but instead, yielding 

depend on a function of all three values of principal shearing stress. Since the 

yield criterion is based on differences of normal stresses, 𝜎1 - 𝜎2, etc., the 

criterion is independent of the component of hydrostatic stress. 

• Since the von Mises' yield criterion involves squared terms, the result is 

independent of the sign of the individual stresses.  
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This is an important advantage since it is not necessary to know which are the 

largest and smallest principal stresses in order to use this yield criterion. 

MAXIMUM-SHEAR-STRESS OR TRESCA CRITERION 

This yield criterion assumes that yielding occurs when the maximum shear stress 

reaches the value of the shear stress in the uniaxial-tension test. From Eq. (2-21), 

in [Dieter G. E., Mechanical metallurgy] the maximum shear stress is given by 

𝜏𝑚𝑎𝑥 = 
𝜎1 − 𝜎3
2

 

Where 𝜎1 is the algebraically largest and 𝜎3 is the algebraically smallest principal 

stress 

• For uniaxial tension, 𝜎1=𝜎0, 𝜎 2=𝜎3= 0, and the shearing yield stress 𝜏0 is equal 

to𝜎0 2 . Substituting all the maximum shear stress becomes 

𝜏𝑚𝑎𝑥 =  
𝜎1 − 𝜎3
2
=  𝜏0 = 

𝜎0
2
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Therefore, the maximum-shear-stress criterion is given by 

𝜎1 − 𝜎3 = 𝜎0 

For a state of pure shear, 𝜎1 = -𝜎3 = k, 𝜎2 = 0, the maximum-shear-stress criterion 

predicts that yielding will occur when 

𝜎1 − 𝜎3 = 2𝑘 = 𝜎0 

𝑘 =  
𝜎0
2

 

So that the maximum-shear-stress criterion may be written 

𝜎1 − 𝜎3 =  𝜎1
′ − 𝜎3

′ = 2𝑘 

Note that the maximum shear stress criterion is lass complicated mathematically 

than the von Mises’ criterion and for this reason it is often used in engineering 

design. However, the maximum shear criterion does not take into consideration 

the intermediate principal stress. 
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For simplicity, the von Mises' criterion for most of the theoretical work is usually 

preferred as  

4𝑗2
3 −  27 𝑗3

2 −  36 𝑘2 𝑗2
2 +  96 𝑘4 𝑗2 −  64 𝑘

6 = 0 

 

 

 

 

Comparison of yield criteria for 
plane stress. 



LECTURE-10 
PLASTIC DEFORMATION OF SINGLE CRYSTALS 

 Following the discovery of the diffraction of x-rays by metallic crystals by Von 

Laue in 1912 and the realization that metals were fundamentally composed of 

atoms arranged in specific geometric lattices there have been a great many 

investigations of the relationships between atomic structure and the plastic 

behavior of metals. 

 The dislocation theory, which plays such an important part in modem concepts 

of plastic deformation. 

CONCEPTS OF CRYSTAL GEOMETRY 

 X-ray diffraction analysis shows that the atoms in a metal crystal are arranged in a 

regular, repeated three-dimensional pattern. The atom arrangement of metals is 

most simply portrayed by a crystal lattice in which the atoms are visualized as 

hard balls located at particular locations in a geometrical arrangement. 

 

 

 

 

 



Continued… 
. 

 

 

 

 

• The most elementary crystal structure is the simple cubic lattice. This is the 

type of structure cell found for ionic crystals, such as NaCl and LiF. 

• Three mutually perpendicular axes are arbitrarily placed one of the comers of 

the cell.  

• Crystallographic planes and directions will be specified with respect to these 

axes in terms of Miller indices. 

a) A crystallographic plane is specified in terms of the length of its intercepts 

on the three axes, measured from the origin of the coordinate axes. 

b) To simplify the crystallographic formulas, the reciprocals of these intercepts 

are used.  

c) They are reduced to a lowest common denominator to give the Miller 

indices (hkl) of the plane. 

 



Continued… 

• For example, the plane ABCD in Fig. 4-1 is parallel to the x and z axes and 

intersects the y axis at one interatomic distance a0. Therefore, the indices of the 

plane are 1 ∞ , 1 1 , 1 ∞  or (hkl) = (010). 

Simple cubic structure 

• Plane EBCF would be 

designated as the 1 00  

plane, since the origin of the 

coordinate system can be 

moved to G because every 

point in a space lattice has 

the same arrangement of 

points as every other point. 
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• The bar over one of the integers indicates that the plane intersects one of the 

axes in a negative direction. 

• There are six crystallographically equivalent planes of the type (100), anyone of 

which can have the indices (100), (010), (001), (100), (010), (001) depending 

upon the choice of axes. 

• The notation {100} is used when they are to be considered as a group, or family 

of planes. Crystallographic directions are indicated by integers in brackets: 

[uvw]. 

• Reciprocals are not used in determining directions. As an example, the direction 

of the line FD is obtained by moving out from the origin a distance ao along the 

x axis and moving an equal distance in the positive y direction. 

• The indices of this direction are then [110]. A family of crystallographically 

equivalent directions would be designated <uvw>.  
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• For the cubic lattice only, a direction is always perpendicular to the plane 

having the same indices. 

• Many of the common metals have either a body-centered cubic (bcc) or face-

centered cubic (fcc) crystal structure. 

• Below schematic (a) shows a body-centered cubic structure cell with an atom at 

each corner and another atom at the body center of the cube. 

 

 

 

 

 

 

 

 

 

 

(a) body-centered cubic (bcc)  (b) face-centered cubic (fcc) crystal structure 
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• Each corner atom is surrounded by eight adjacent atoms, as is the atom located 

at the center of the cell. Therefore, there are two atoms per structure cell for 

the body-centered cubic structure (
8

8
+ 1). Typical metals which have this 

crystal structure are alpha iron, columbium, tantalum, chromium, 

molybdenum, and tungsten. 

• Figure (b) shows the structure cell for a face-centered cubic crystal structure. In 

addition to an atom at each corner, there is an atom at the center of each of 

the cube faces. Since these latter atoms belong to two unit cells, there are four 

atoms per structure cell in the face-centered cubic structure(
8

8
+
6

2
). Al, Cu, Au, 

Ag, and Ni are common face centered cubic metals. 
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For cubic systems there is a set of simple relationships between a direction [uvw] 

and a plane (hkl) which are very useful.  

a. [uvw] is normal to (hkl) when u = h; v = k; w = l. [111] is normal to (111). 

b. [uvw] is parallel to (hkl), i.e., [uvw] lies in (hkl), when hu + kv + lw = 0. [112] is a 

direction in (111). 

c. Two planes (h1k1l1) and (h2k2l2 ) are normal if h1h2 + k1k 2 + l1l2 = 0. (001) is 

perpendicular to (100) and (010). (110) is perpendicular to (110).  

d. Two directions u1v1w1 and u2v2w2 are normal if u1u2+ v1v2 + w1w2 = 0. [100] is   

perpendicular to [001]. [111] is perpendicular to [112]. 

e. Angles between planes (h1k1l1) and (h2k2l2 )are given by 

𝑐𝑜𝑠𝜃 =
ℎ1ℎ2 + 𝑘1𝑘2 + 𝑙1𝑙2

ℎ1
2 + 𝑘1

2 + 𝑙1
2 ℎ2

2 + 𝑘2
2 + 𝑙2

2
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• The third common metallic crystal structure is the hexagonal close-packed 

(hcp) structure. 

• In order to specify planes and directions in the hcp structure, it is convenient to 

use the Miller-Bravais system with four indices of the type (hkil). 

 

 

 

 

HCP Structure 

• These indices are based on four 

axes; the three axes a1, a2, a3 are 

1200 apart in the basal plane, and 

the vertical c axis is normal to the 

basal plane. 

• The third index is related to the 

first two by the relation i = - (h + k). 



Continued… 
 

 

 

 

• The face-centered cubic and 

hexagonal close-packed structures 

can both be built up from a stacking 

of close-packed planes of spheres.  

• The schematic of stacking of close-

packed structure is shown that the 

atomic arrangement or stacking can 

be done in two ways in which the 

spheres can be stacked. Stacking of close-packed structure 

• The first layer of spheres is arranged so that each sphere is surrounded by 

and just touching six other spheres.. This corresponds to the solid circles in 

Figure. 



Continued… 
• A second layer of close-packed spheres can be placed over the bottom layer so 

that the centers of the atoms in the second plane cover one-half the number of 

valleys in the bottom layer (dashed circles in Figure). 

• There are two ways of adding spheres to give a third close-packed plane. 

Although the spheres in the third layer must fit into the valleys in the second 

plane, they may lie either over the valleys not covered in the first plane (the 

dots in Fig.) or directly above the atoms in the first plane (the crosses in Fig.). 

• The first possibility results in a stacking sequence ABCABC…..which is found for 

the {111} planes of an fcc structure. 

• The other possibility results in the stacking sequence ABAB…..which is found 

for the (0001) basal plane of the hcp structure. For the ideal hcp packing, the 

ratio 
𝑐

𝑎
 is 
8

3
 or 1.633. 

 

 

 

 



Continued… 

• Table 4-1 shows that actual hcp metals deviate from the ideal 
𝑐

𝑎
 ratio. 

 

 

 

 

 

• The fcc and hcp structures are both close-packed structures.  

• 74 % of the volume of the unit cell is occupied by atoms, on a hard sphere 

model, in the fcc and hcp structures.  This is contrasted with 68 % packing for a 

bcc unit cell.  

• 52 % of the volume occupied by atoms in the simple cubic unit cell. 

 



LECTURE-11 
LATTICE DEFECTS 

• While the concept of the perfect lattice is adequate for explaining the 

structure-insensitive properties of metals. For a better understanding of the 

structure-sensitive properties it has been necessary to consider a number of 

types of lattice defects. 

 

 

 

 



Continued… 
• The term defect or imperfection, is generally used to describe any deviation 

from an orderly array of lattice points. 

 

 

 

 

 

• Low-angle boundaries and grain boundaries are surface defects. 

• When the deviation from the periodic arrangement of the lattice is localized to 

the vicinity of only a few atoms it is called a point defect or point imperfection. 

 

Schematic of Point defects (a) vacancy (b) interstitial  (c) impurity atom 



Continued… 
• However, if the defect extends through microscopic regions of the crystal, it is 

called a lattice imperfection. 

• Lattice imperfections may be divided into line defects and surface or plane 

defects. 

• The edge and screw dislocations that are discussed in this section are the 

common line defects encountered in metals. 

• The stacking fault between two close-packed regions of the crystal that have 

alternate stacking sequences and twinned region of a crystal are other 

examples of surface defects. 

POINT DEFECTS 

• A vacancy or vacant lattice site exists when an atom is missing from a normal 

lattice position.  



Continued… 

• In pure metals, small numbers of vacancies are created by thermal excitation, 

and these are thermodynamically stable at temperatures greater than absolute 

zero.  

• At equilibrium, the fraction of lattices that are vacant at a given temperature is 

given approximately by the equation. 

𝑛

𝑁
= 𝑒

−𝐸𝑠
𝑘𝑇  

Where n is the number of vacant sites in N sites and Es is the energy required to 

move an atom from the interior of a crystal to its surface. 

• An atom that is trapped inside the crystal at a point intermediate between 

normal lattice positions is called an interstitial atom, or interstitialcy (Fig. b).  



Continued… 
• The interstitial defect occurs in pure metals as a result of bombardment with 

high-energy nuclear particles (radiation damage), but it does not occur 

frequently as a result of thermal activation. 

• The presence of an impurity atom at a lattice position (Fig. c) or at an 

interstitial position results in a local disturbance of the periodicity of the lattice, 

the same as for vacancies and interstitials. 

• It is important to realize that no material is completely pure. Most commercially 

"pure" materials contain usually 0.01 to 1 percent impurities, While ultra purity 

materials, such as germanium and silicon crystals for transistors, contain 

purposely introduced foreign atoms on the order of one part in 1010.  

 



Continued… 
LINE DEFECTS-DISLOCATIONS 

• The most important two-dimensional, or line, defect is the dislocation. The 

dislocation is the defect responsible for the phenomenon of slip, by which most 

metals deform plastically. 

 

 

• In the schematic, AB represents a 

dislocation lying in the slip plane, which is 

the plane of the paper. It is assumed that 

slip is advancing to the right. All the 

atoms above area C have been displaced 

one atomic distance in the slip direction; 

the atoms above D have not yet slipped. 

AB is then the boundary between the 

slipped and unslipped regions. 

Fig-Edge dislocation produced by slip in a 
simple cubic lattice. Dislocation lies along 
AD, perpendicular to slip direction. Slip has 
occurred over area ABCD 



Continued… 
• In the absence of obstacles, a dislocation can move easily on the application of 

only a small force. This helps explain why real crystals deform much more 

readily than would be expected for a crystal with a perfect lattice.  

• Not only are dislocations important for explaining the slip of crystals, but they 

are also intimately connected with nearly all other mechanical phenomena 

such as strain hardening, the yield point, creep, fatigue, and brittle fracture. 

• The two basic types of dislocations are the edge dislocation and the screw 

dislocation.  

• Figure shows the slip that produces an edge dislocation for an element of 

crystal having a simple cubic lattice. Slip has occurred in the direction of the slip 

vector over the area ABCD. The boundary between the right-hand slipped part 

of the crystal and the left-hand part which has not yet slipped is the line AD, the 

edge dislocation. 

 

 



Continued… 
• The amount of displacement is equal to the Burgers vector (b) of the 

dislocation. A defining characteristic of an edge dislocation is that its Burgers 

vector is always perpendicular to the dislocation line. 

• There is one more vertical row of atoms above the slip plane than below it. The 

atomic arrangement results in a compressive stress above the slip plane and a 

tensile stress below the slip plane.  

• An edge dislocation with the extra plane of atoms above the slip plane, as in 

Figure, by convention is called a positive edge dislocation and is frequently 

indicated by the symbol ┴. If the extra plane of atoms lies below the slip plane, 

the dislocation is a negative edge dislocation, ┬. 

• A pure edge dislocation can glide or slip in a direction perpendicular to its 

length. However, it may move vertically by a process known as climb, if 

diffusion of atoms or vacancies can take place at an appreciable rate. 

 

 

 



LECTURE-12 
• Although the exact arrangement of atoms 

along AD is not known, it is generally agreed 

that Fig. closely represents the atomic 

arrangement in a plane normal to the edge 

dislocation AD. 

• The plane of the paper in this figure 

corresponds to a (100) plane in a simple cubic 

lattice and is equivalent to any plane parallel 

to the front face of previous Figure. 

 

 

 

Atomic arrangement in a plane 
normal to an edge dislocation 

• Note that the lattice is distorted in the region of the dislocation. There is one 

more vertical row of atoms above the slip plane than below it. The atomic 

arrangement results in a compressive stress above the slip plane and a tensile 

stress below the slip plane. 



Continued… 
• An edge dislocation with the extra plane of atoms above the slip plane, as in 

Fig., by convention is called a positive edge dislocation and is frequently 

indicated by the symbol ┴. If the extra plane of atoms lies below the slip plane, 

the dislocation is a negative edge dislocation, ┬. 

• A pure edge dislocation can glide or slip in a direction perpendicular to its 

length. However, it may move vertically by a process known as climb, if 

diffusion of atoms or vacancies can take place at an appreciable rate. 

• Consider Fig., For the edge dislocation to move upward (positive direction of 

climb), it is necessary to remove the extra atom directly over the symbol ┴ or to 

add a vacancy to this spot. 

• One such atom would have to be removed for every atomic spacing; which the 

dislocation climbs.  



Continued… 
• Conversely, if the dislocation moved down, atoms would have to be added. 

Atoms could be removed from the extra plane of atoms by the extra atom 

interacting with a lattice vacancy. 

• Atoms are added to the extra plane for negative climb by the diffusion of an 

atom from the surrounding crystal, creating a vacancy. Since movement by 

climb is diffusion controlled, motion is much slower than in glide and less likely 

except at high temperatures. 

 

 

 

• Figure Slip that produces a screw 

dislocation in a simple cubic lattice. 

Dislocation lies along AD, parallel to slip 

direction. Slip has occurred over the area 

ABCD. 



Continued… 
Figure Atomic arrangement 

around the screw dislocation 

shown in previous Fig.. The 

plane of the figure is parallel to 

the slip plane. ABCD is the 

slipped area, and AD is the 

screw dislocation. Open circles 

represent atoms in the atomic 

plane just above the slip plane, 

and the solid circles are atoms 

in the plane just below the slip 

plane. 



Continued… 
• The second basic type of dislocation is the screw, or Burgers dislocation. Figure 

shows a simple example of a screw dislocation. The upper part of the crystal to 

the right of AD has moved relative to the lower part in the direction of the slip 

vector. No slip has taken place to the left of AD, and therefore AD is a 

dislocation line. 

• Thus, the dislocation line is parallel to its Burgers vector, or slip vector, and by 

definition this must be a screw dislocation. Consider the trace of a circuit 

around the dislocation line, on the front face of the crystal. 

• Starting at X and completing a counterclockwise circuit, we arrive at X', one 

atomic plane behind that containing X. In making this circuit we have traced the 

path of a right-handed screw. 

• Every time a circuit is made around the dislocation line, the end point is 

displaced one plane parallel to the slip plane in the lattice.  



Continued… 
• Therefore, the atomic planes are arranged around the dislocation in a spiral 

staircase or screw. The arrangement of atoms (in two dimensions) around a 

screw dislocation in a simple cubic lattice is shown in Fig. 

• In this figure we are looking down on the slip plane in Fig.. The open circles 

represent atoms just above the slip plane, and the solid circles are atoms just 

below the slip plane. A screw dislocation does not have a preferred slip plane, 

as an edge dislocation has, and therefore the motion of a screw dislocation is 

less restricted than the motion of an edge dislocation.  

• However, movement by climb is not possible with a screw dislocation. 

DEFORMATION BY SLIP 

The usual method of plastic deformation in metals is by the sliding of blocks of the 

crystal over one another along definite crystallographic planes, called slip planes.  

 



Continued… 

• As a very crude approximation, the slip, or glide of a crystal can be considered 

analogous to the distortion produced in a deck of cards when it is pushed from 

one end. 

• In Fig. (a), a shear stress is applied to a metal cube with a top polished surface. 

Slip occurs when the shear stress exceeds a critical value. 

 

 

Figure illustrates this classical picture of slip. 



Continued… 

• The atoms move an integral number of atomic distances along the slip plane, 

and a step is produced in the polished surface (Fig. b). 

• When we view the polished surface from above with a microscope, the step 

shows up as a line, which we call a slip line. If the surface is then repolished 

after slip has occurred, so that the step is removed, the slip line will disappear 

(Fig. c). 

• Because of the translational symmetry of a crystal lattice, the crystal structure 

is perfectly restored after slip has taken place provided that the deformation 

was uniform. 



Continued… 

• Note that slip lines are due 

to changes in surface 

elevation and that the 

surface must be suitably 

prepared for microscopic 

observation prior to 

deformation if the slip 

lines are to be observed. 

Figure shows straight slip 

lines in copper. 
Straight slip line in Cu 



Continued… 
The fine structure of slip 

lines has been studied at 

high magnification by 

means of the electron 

microscope. What appears 

as a line, or at best a narrow 

band at 1,500 diameters' 

magnification in the optical 

microscope can be resolved 

by the electron microscope 

as discrete slip lamellae at 

20,000 diameters, shown 

schematically in Fig.  

 

Schematic drawing of the line structure of a slip 
band, (a) Small deformation; (b) large deformation 



Continued… 
• Slip occurs most readily in specific directions on certain crystallographic planes.  

• Generally the slip plane is the plane of greatest atomic density (Table 4-2) and 

the slip direction is the closest-packed direction within the slip plane. 

• The slip plane together with the slip direction establishes the slip system 



Continued… 



LECTURE-13 
HCP System 

• In the hexagonal close-packed metals, the only plane with high atomic density 

is the basal plane (0001). The axes <1120> are the close-packed directions. 

• For zinc, cadmium, magnesium, and cobalt slip occurs on the (0001) plane in 

the <1120> directions. Since there is only one basal plane per unit cell and 

three <1120> directions.  

• The hcp structure possesses three slip systems. 

• The limited number of slip systems is the reason for the extreme orientation 

dependence and low ductility in hcp crystals. 

• Zirconium and titanium, which have low c/a ratios, slip primarily on the prism 

and pyramidal planes in the <112 0> direction. 



Continued… 

FCC System 

•  In the face-centered cubic structure, the {111} 

octahedral planes and the <110> directions are the 

close-packed systems. 

• There are eight {111} planes in the fcc unit cell. 

However, the planes at opposite faces of the 

octahedron are parallel to each other, so that there 

are only four sets of octahedral planes. 

• Each {111} plane contains three <110> directions 

(the reverse directions being neglected). 

• Therefore, the fcc lattice has 12 possible slip 

systems. 

Octahedron represent the 8 
nos. of octahedral planes or 4 

pair/set of different 
octahedral planes. 



Continued… 
Example: 

Determine the slip systems for slip on a 

(111) plane in a fee crystal and sketch the 

result.  

  

  

  

  

  

  

  

  

 

• Slip direction in fee is <110> type direction. Slip directions are most easily 

established from a sketch of the (111) plane.  

• To prove that these slip directions lie in the slip plane hu + kv + Iw = 0 



Continued… 

BCC System 

•  The bcc structure is not a close-packed structure like the fcc or hcp structures. 

• Accordingly, there is no one plane of predominant atomic density, as (111) in 

the fcc structure and (0001) in the hcp structure. 

• The {110} planes have the highest atomic density in the bcc structure, but 

they are not greatly superior in this respect to several other planes. 

• However, in the bcc structure the <111> direction is just as close-packed as 

the <110> and <1120> directions in the fcc and hcp structures respectively. 

• Therefore, the bcc metals obey the general rule that the slip direction is the 

close-packed direction, but they differ from most other metals by not having 

a definite single slip plane. 



Continued… 
• Slip in bcc metals is found to occur on the {110}, {112}, and {123} planes, while 

the slip direction is always the [111] direction. 

• There are 48 possible slip systems, but since the planes are not so close-

packed as in the fcc structure, higher shearing stresses are usually required to 

cause slip. 

• Slip lines in bcc metals have a wavy appearance. This is due to the fact that 

slip occurs on several planes, {110}, {112}, {123} but always in the close-

packed <111> direction which is common to each of these planes. 

• Dislocations can readily move from one type of plane to another by cross sip, 

giving rise to the irregular wavy slip bands. 



Continued… 
Property at high temp: 

• Certain metals show additional slip systems with increased temperature. 

Aluminum deforms on the {110} plane at elevated temperature, while in 

magnesium the {1011} pyramidal plane plays an important role in deformation 

by slip above 225 0C. 

• In all cases the slip direction remains the same when the slip plane changes 

with temperature. 

Slip in a perfect lattice 

• If slip is assumed to occur by the translation of one plane of atoms over 

another, it is possible to make a reasonable estimate of the shear stress 

required for such a movement in a perfect lattice.  



Continued… 

Figure (a) Shear displacement of one 

plane of atoms over another atomic 

plane; (b) variation of shearing stress 

with displacement in slip direction. 



Continued… 
• Consider two planes of atoms subjected to a homogeneous shear stress as 

shown in previous figure. The shear stress is assumed to act in the slip plane 

along the slip direction. The distance between atoms in the slip directions is b, 

and the spacing between adjacent lattice planes is a. The shear stress causes a 

displacement x in the slip direction between the pair of adjacent lattice planes. 

• The shearing stress is initially zero when the two planes are in coincidence, and 

it is also zero when the two planes have moved one identity distance b, so that 

point 1 in the top plane is over point 2 on the bottom plane. 

• The shearing stress is also zero when the atoms of the top plane are midway 

between those of the bottom plane, since this is a symmetry position. 

• Between these positions each atom is attracted toward the nearest atom of 

the other row, so that the shearing stress is a periodic function of the 

displacement. 

 

 



Continued… 
As a first approximation, the relationship between shear stress and displacement 

can be expressed by a sine function 

 𝜏 = 𝜏𝑚𝑠𝑖𝑛 2𝜋𝑥 𝑏  

Where 𝜏𝑚the amplitude of the sine wave and b is is the period. At small values of 

displacement, Hooke's law should apply. 

  𝜏 = 𝐺𝛾 = 𝐺𝑥 𝑎  

For small values of x/b, the above equation can be written as 

𝜏 = 𝜏𝑚 2𝜋𝑥 𝑏  

Combining above two equations provide an expression for the maximum shear 

stress at which slip should occur. 

𝜏𝑚 =
𝐺

2𝜋

𝑏

𝑎
 

 



Continued… 
• As a rough approximation, b can be taken equal to a, with the result that the 

theoretical shear strength of a perfect crystal is approximately equal to the 

shear modulus divided by 2𝜋  

𝝉𝒎 =
𝑮

𝟐𝝅
 

• The shear modulus for metals is in the range 20 to 150 GPa.  So the above Eq. 

predicts that the theoretical shear stress will be in the range (3 to 30 GPa),  

• While actual values of the shear stress required to produce, plastic 

deformation in metal single crystals are in the range 0.5 to 10 MPa. 

• Even if more refined calculations are used to correct the sine-wave 

assumption, the value of 𝜏𝑚 cannot be made equal to the observed shear 

stress. 

 

 



Continued… 
• Tyson, using a computer solution of the interatomic force equations, predicted 

𝜏𝑚 = G/16 for an fcc metal, G/8 for an NaCl structure, and G/4 for a covalently 

bonded diamond structure. 

• Since the theoretical shear strength of metal crystals is at least 100 times 

greater than the observed shear strength, it must be concluded that a 

mechanism other than bodily shearing of planes of atoms is responsible for 

slip. 

• In the next section it is shown that dislocations provide such a mechanism. 

 

 



LECTURE-14 
Slip by Dislocation Movement 

The concept of the dislocation was first introduced to explain the discrepancy 

between the observed and theoretical shear strengths of metals. 

 For the dislocation concept to be valid it is necessary to show  

 (1) that the motion of a dislocation through a crystal lattice requires a 

 stress far smaller than the theoretical shear stress, and  

 (2) That the movement of the dislocation produces a step, or slip band, at 

 the free surface. 

 In a perfect lattice all atoms above and below the slip plane are in minimum 

energy positions. When a shear stress is applied to the crystal, the same force 

opposing the movement acts on all the atoms. this is the model for slip 

presented in previous figure 

 



Continued… 
 When there is a dislocation in the crystal, the atoms well away from the 

dislocation are still in the minimum energy positions but at the dislocation only 

a small movement of the atoms is required.  

 

Figure (a) Atom movements near dislocation in slip; (b) movement of an edge 
dislocation. 



Continued… 
 Referring to Fig. (a), the extra plane of atoms at the edge dislocation initially is 

at 4. Under the action of the shear stress, a very small movement of atoms to 

the right will allow this half plane to line up with the half plane 5', at the 

same time cutting the half plane 5 from its neighbors below the slip plane. 

 

 By this process the edge dislocation line has moved from its initial position 

between planes 4' and 5' to a new position between planes 5' and 6'. 

 

 Since the atoms around the dislocations are symmetrically placed on opposite 

sides of the extra half plane, equal and opposite forces oppose and assist the 

motion. Thus, in a first approximation there is no net force on the dislocation 

and the stress required to move the dislocation is zero. 

 



Continued… 
 The continuation of this process under the stresses shown in Fig. moves the 

dislocation to the right. 

 

 When the extra half plane of atoms reaches a free surface (Fig. (b)), it results in 

a slip step of one Burgers vector, or one atomic distance for the simple cubic 

lattice. 

 

Figure (a) Energy change from unslipped to slipped state; (b) stages in growth of slipped region. 



Continued… 
 Slip by dislocation motion has been proposed by Cottrell. Consider that plastic 

deformation is the transition from an unslipped to a slipped state (Fig. (a)). 

Since the process is opposed by an energy barrier, ΔE in order to facilitate the 

process it is logical to assume that the material will not all make the transition 

simultaneously. 

 To minimize the energetics of the process, the slipped material will grow at the 

expense of the unslipped region by the advance of an interfacial region (Fig. 

(b)). The interfacial region is a dislocation. 

 To minimize the energy for the transition, we expect the interface thickness w 

to be narrow. The distance w is the width of the dislocation. 

 The smaller the width of the dislocation, the lower is the interfacial energy, but 

the wider the dislocation, the lower is the elastic energy of the crystal because 

then the atomic spacing in the Slip direction is closer to its equilibrium spacing.  

 

 



Continued… 
 Thus, the equilibrium width of the dislocation is determined by a balance 

between these two opposing energy changes (one is elastic energy and other 

one is interfacial energy). 

PEIERLS-NABARRO FORCE 

 The dislocation width is important because it determines the force required to 

move a dislocation through the crystal lattice. This force is called Peierls - 

Nabarro force. The Peierls stress is the shear stress required to move a 

dislocation through a crystal lattice in a particular direction. 

 

Where a is the distance between slip planes and b is the distance between atoms 

in the slip direction. Note that the dislocation width appears in the exponential 

term in Eq., so that the Peierls stress will be very sensitive to the atomic position 

at the core of a dislocation. 



Continued… 
 These are not known with any high degree of accuracy and, since above Eq. 

was derived for the sinusoidal force-distance law that has only limited validity,  

 The equation cannot be used for precise calculations. However, it is accurate 

enough to show that the stress needed to move a dislocation in a metal is 

quite low. 

 In spite of these limitations, the Peierls equation has important conceptual 

value. It shows that materials with wide dislocations will require a low stress 

to move the dislocations. 

CRITICAL RESOLVED SHEAR STRESS FOR SLIP 

The extent of slip in a single crystal depends on the magnitude of the shearing 

stress produced by external loads,  the geometry of the crystal structure, and the 

orientation of the active slip planes with respect to the shearing stresses. 



Continued… 
 Slip begins when the shearing stress on the slip plane in the slip direction 

reaches a threshold value called the critical resolved shear stress (CRSS). This 

value is really the single-crystal equivalent of the yield stress of an ordinary 

stress-strain curve.  

 The value of the CRSS depends mainly on composition and temperature. 

 The fact that different tensile loads are required to produce slip in single crystals 

of different orientation can be rationalized by a CRSS; this was first recognized 

by Schmid. 

 To calculate the CRSS from a single crystal tested in tension, it is necessary to 

know, from x-ray diffraction, the orientation with respect to the tensile axis of 

the plane on which slip first appears and the slip direction. 



LECTURE-15 

 Consider a cylindrical single crystal with 

cross-sectional area A.  

 The angle between the normal to the slip 

plane and the tensile axis is 𝝓 and the angle 

which the slip direction makes with the 

tensile axis is 𝝀. 

 The area of the slip plane inclined at the 

angle 𝝓 will be A/cos 𝝓 and the component 

of the axial load acting in the slip plane in 

the slip direction is P Cos 𝝀. 
Diagram for calculating critical 

resolved shear stress. 



Continued… 
 Therefore, the CRSS is given by: 

 𝜏𝑅 =
𝑃𝑐𝑜𝑠λ

𝐴 𝑐𝑜𝑠Φ 
=

𝑃

𝐴
𝑐𝑜𝑠Φ𝑐𝑜𝑠λ 

 

 The above Equation gives the shear stress resolved on the slip plane in the slip 

direction. This CRSS is a maximum when 𝝓= 𝝀 = 45°, so that 𝜏𝑅 =
1

2
𝑃

𝐴 .  

 

 If the tension axis is normal to the slip plane (𝜆 = 90°) or if it is parallel to the slip 

plane (𝜙= 90°), the resolved shear stress is zero. Slip will not occur for these 

extreme orientations since there is no shear stress on the slip plane.  

 

 Crystals close to these orientations tend to fracture rather than slip. 



Continued… 
Example: Determine the tensile stress that is applied along the [11 0] axis of a silver 

crystal to cause slip on the (111) [01 1] system. The critical resolved shear stress is 6 

MPa. 

 The angle between tensile axis [11 0] and normal to (111) is 

 

 

The angle between tensile axis [11 0] and slip direction [011] is 

  

  

From Eq. for critical resolved shear stress calculation 

  

  



Continued… 
Property of CRSS 

 The importance of small amounts of impurities in increasing the critical resolved 

shear stress is shown by the data for silver and copper.  

 Alloying-element additions have even a greater effect, as shown by the data for 

gold-silver alloys in Figure.  

Figure Variation of critical resolved shear stress with composition in silver-gold-alloy 
single crystals. 



Continued… 
 Note that a large increase in the resistance to slip is produced by alloying gold 

and silver even though these atoms are very much alike in size and electro 

negativity, and hence they form a solid solution over the complete range of 

composition.  

 In solid solutions, where the solute atoms differ considerably in size from the 

solvent atoms, an even greater increase in critical resolved shear stress would 

be observed. 

 The magnitude of the critical resolved shear stress of a crystal is determined by 

the interaction of its population of dislocations with each other and with defects 

such as vacancies, interstitials, and impurity atoms. This stress is, of course, 

greater than the stress required to move a single dislocation, but it is 

appreciably lower than the stress required to produce slip in a perfect lattice. 



Continued… 
 On the basis of this reasoning, the critical resolved shear stress should decrease 

as the density of defects decreases, provided that the total number of 

imperfections is not zero. 

SCHMID LAW: 

  The ratio of the resolved shear stress to the axial stress is called the Schmid 

factor m. For a single crystal loaded in tension or compression along its axis, m = 

cos 𝝓 cos 𝝀.  

 It is observed experimentally that a single crystal will slip when the resolved 

shear stress on the slip plane reaches a critical value. This behavior, known as 

Schmid's law, is best demonstrated with hcp metals where the limited number 

of slip systems allows large differences in orientation between the slip plane and 

the tensile axis. 

 



Continued… 
Deformation of Single crystals 

 Most studies of the mechanical properties of single crystals are made by 

subjecting the crystal to simple uniaxial tension. Therefore, the specimen is not 

permitted to deform freely by uniform glide on every slip plane along the gage 

length of the specimen, as is pictured in Fig. (a). Instead, the slip planes rotate 

toward the tensile axis since the tensile axis of the specimen remains fixed, as in 

Fig. (b) 

 

 Since plastic low occurs by slip on certain planes in particular directions, the 

measured increase in length of the specimen for a given amount of slip will 

depend on the orientations of the slip plane and direction with the specimen 

axis. 



Continued… 
 The fundamental measure of plastic strain in a single crystal is the 

crystallographic glide strain γ 

 Glide strain is the relative displacement of two parallel slip planes separated at a 

unit distance. The equations relating glide strain with specimen extension can 

be derived from Fig. 

 

(a) Tensile deformation of single crystal without constraint; (b) rotation of slip planes 
due to constraint. 

 As the single crystal elongates, the slip 

direction rotates toward the tensile 

axis. For simplicity in Fig., the glide 

elements are kept fixed and the tensile 

axis is rotated as the crystal elongates 

from L0 to L1 



Continued… 
 The two cases are equivalent geometrically. Moreover, for simplicity the 

orientation of the slip plane is given by the angle χ between the axis of the glide 

ellipse and the tensile axis rather than the angle Φ between the normal to the 

glide ellipse (slip plane) and the tensile axis. With this selection of angles, = P/A 

sin χ cos Φ. From triangle ABB', using the law of sines, we can see that. 



Continued… 
 From triangles ABC and 

AB'C 

 

 The glide strain is defined 

as the total amount of slip 

divided by the thickness of 

the glide packet 

 

 Again, from the law of sines 

 

Figure Extension of a single crystal 



Continued… 
 Substitution in the expression for glide strain, and after considerable 

trigonometric manipulation, results in 

 

  

 Thus, the glide shear strain may be determined from the initial orientation of 

the slip plane and slip direction (xo and X0) and the extension of the specimen 

L1/L0. This analysis assumes that slip occurs on only a single slip system. 

 If the orientation of the glide elements can be determined during or after 

deformation, the glide strain may be determined from 



Continued… 

 The fundamental way to 

present single-crystal data is by 

plotting resolved shear stress 

vs. glide shear strain. Figure 

shows that there are important 

differences between metals. 

Typically, fcc metals exhibit 

greater strain hardening than 

hcp metals.. Typical single-crystal stress-strain curves 



LECTURE-16 
Deformation of face-centered cubic crystals 

•  Because FCC crystals have high symmetry and 12 potential slip systems, there is 

a wide choice of slip systems. The slip plane will not have to undergo much 

rotation before the resolved shear stress becomes high on another {111} <110> 

slip system. 

Standard (001) stereographic projection 
or a cubic crystal. 

• The initial operative slip system, the 

primary slip system, will be the one with 

the highest Schmid factor, m = sin χ cos 

λ. The primary system will depend on 

the orientation of the crystal relative to 

the tensile stress axis. 



Continued… 
• The relationship between the stress axis and the 12 possible slip systems is best 

shown on a stereographic projection (Fig.), where each of the unit triangles 

defines a region in which a particular slip system operates. 

• There are four (111) poles ABCD representing the normals to the octahedral 

{111} slip planes. Slip directions are indicated I through IV. 

• For a specimen axis at P, the slip system BIV will be operative. Φ0 and λ0 are 

given by the great circles through B-P-IV.  

• We can use the stereographic plot to follow the rotation of the slip system 

toward the tensile axis. As the specimen elongates, λ decreases and Φ increases. 

However it is more convenient to consider that the slip system remains fixed 

and the specimen axis rotates. 



Continued… 
• As the specimen elongates, the specimen axis eventually reaches the [001]-

[1 11] boundary at P’. Now the resolved shear stress is equal on the primary slip 

system and the conjugate slip system (111)[011]. At this point deformation 

proceeds on the two slip systems simultaneously to produce duplex slip or 

multiple slip. 

• Under the microscope conjugate slip appears as another set of intersecting slip 

lines. The fact that slip can occur equally on both slip systems indicates that 

latent strain hardening must have occurred on the conjugate system when only 

the primary system was acting.  

• The specimen axis rotates along the [001]-[1 11] boundary to the [1 12] pole, 

which is midway between the two operative slip directions [1 01] and [011]. 

When the specimen axis reaches [1 12] it stays at that orientation until the 

specimen necks down and fractures. 



Continued… 
• Crystals whose axes lie at orientations along the boundaries of the stereographic 

triangle represent a special situation because the critical resolved shear stress 

will be the same on more than one slip system.  

Operative slip systems along the boundaries of stereographic triangle 



Continued… 
• Therefore, plastic deformation will begin on more than one slip plane and they 

will initially deform by duplex slip. Figure shows the number of operative slip 

systems in a cubic crystal at these orientations.  

• Deformation by duplex slip results in a high degree of strain hardening 

because of interaction between dislocations on two intersecting slip systems. 

This is shown in Fig. of typical single-crystal stress-strain curves, where Mg and 

Zn deform on a single Figure of Operative slip systems along boundaries of 

stereographic triangle. slip system (because of the hcp geometry) while the 

stress-strain curves for Al and Cu are for crystals oriented for duplex slip. 

 



Continued… 

Classical picture of twinning 

Deformation by Twinning: 



Continued… 
• The second important mechanism by which metals deform is the process 

known as twinning. 

• Twinning results when a portion of the crystal takes up an orientation that is 

related to the orientation of the rest of the untwinned lattice in a definite, 

symmetrical way. 

• The twinned portion of the crystal is a mirror image of the parent crystal. 

• The plane of symmetry between the two portions is called the twinning plane. 

• Figure illustrates the classical atomic picture of twinning. Figure (a) represents a 

section perpendicular to the surface in a cubic lattice with a low-index plane 

parallel to the paper and oriented at an angle to the plane of polish. 

• The twinning plane is perpendicular to the paper. 

 

 



Continued… 
• If a shear stress is applied, the crystal will twin about the twinning plane (Fig. b). 

The region to the right of the twinning plane is undeformed. To the left of this 

plane, the planes of atoms have sheared in such a way as to make the lattice a 

mirror image across the twin plane. 

• In Fig. (b), open circles represent atoms which have not moved, dashed circles 

indicate the original positions in the lattice of atoms which change position, and 

solid circles are the initial positions of these atoms in the twinned region. 

• Note that the twin is visible on the polished surface because of the change in 

elevation produced by the deformation and because of the difference in 

crystallographic orientation between the deformed and undeformed regions. 

 



Continued… 
Difference between Slip & Twinning 

Sl. No. Slip Twinning 

1 

The orientation of the crystal above and 

below the slip plane is the same after 

deformation as before. 

While twinning results in an orientation 

difference across the twin plane. 

2 
Slip is usually considered to occur in 

discrete multiples of the atomic spacing 

While in twinning the atom movements are 

much less than an atomic distance. 

3 
Slip occurs on relatively widely spread 

planes 

The twinned region of a crystal every atomic 

plane is involved in the deformation. 

4 Slip appears as thin lines While twinning appears as a board lines or bands 

5 

There is very little change in lattice 

orientation and the steps are visible only 

on the surface of the crystal. If the steps 

are removed by polishing there will be no 

evidence that slip has taken place 

In twinning, there is a different lattice 

orientation in the twinned region, removal of the 

steps by surface polishing will not destroy the 

evidence of twinning. Proper etching solutions, 

sensitive to the difference in orientation will 

reveal the twinned region 

6 
A delay time of several milliseconds 

before a slip band is formed 

Form in a time as short as a few microseconds 
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• If the surface were polished down to section AA, the difference in elevation 

would be eliminated but the twin would still be visible after etching because it 

possesses a different orientation from the untwinned region. 

• Twins may be produced by mechanical deformation or as the result of 

annealing following plastic deformation. The first type are known as 

mechanical twins; the latter are called annealing twins.  

• Mechanical twins are produced in BCC or HCP metals under conditions of rapid 

rate of loading (shock loading) and decreased temperature. 

• FCC metals are not ordinarily considered to deform by mechanical twinning, 

although gold-silver alloys twin fairly readily when deformed at low 

temperature, and mechanical twins have been produced in copper by tensile 

deformation at 4 K and by shock loading. 

 



Continued… 
• Twins can form in a time as short as a few microseconds, while for slip there is a 

delay time of several milliseconds before a slip band is formed. Under certain 

conditions, twins can be heard to form with a click or loud report [tin cry]. 

• If twinning occurs during a tensile test, it produces serrations in the stress-strain 

curve. However, twinning is not a dominant deformation mechanism in metals 

which possess many possible slip systems.  

• Twinning generally occurs when the slip systems are restricted or when 

something increases the critical resolved shear stress (low temperature and 

high strain rate) so that the twinning stress is lower than the stress for slip. 

This explains the occurrence of twinning at low temperatures or high strain rates 

in BCC and FCC metals or in HCP meals at orientations which are unfavorable for 

basal slip. 



Continued… 

• Twinning is important in the overall deformation of metals with a low 

number of slip systems, such as the HCP meals. However, it should be 

understood that only a relatively small fraction of the total volume of a 

crystal is reoriented by twinning, and therefore HCP metals will, in general, 

possess less ductility than metals with a greater number of slip systems 



Continued… 

Microstructures of twins, (a) Neumann bands in iron; (b) mechanical twins produced in 
zinc by polishing; (c) annealing twins in gold-silver alloy. 

Neumann bands in iron: Rectangular patterns of fine striations that appear in iron 
meteorites after they are cut, polished, and etched with dilute nitric acid 
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A process closely related to twinning is the formation of a martensite region. by 

a diffusionless shear transformation. Although both processes produce a local 

region of new lattice orientation, the basic difference is that  

 A martensite plate the crystal structure is different from the parent 

crystal. 

 The diving force for martensitic transformation is the free energy 

difference between the parent crystal and the martensitic phase; whereas 

in twinning the driving force may be assisted by the applied shear stress. 



LECTURE-17 
Stacking Faults 

Faulted structures, (a) FCC packing; (b) deformation fault in FCC; (c) twin fault in FCC; (d) 
HCP packing. 



Continued… 
• The atomic arrangement on the (111) plane of an fee structure and the {0001} 

plane of a HCP structure could be obtained by the stacking of close-packed 

planes of spheres. For the FCC structure, the stacking sequence of the planes of 

atoms is given by ABCABCABC. For the HCP structure, the stacking sequence is 

given by ABABAB. 

• Errors, or faults, in the stacking sequence can be produced in most metals by 

plastic deformation. Slip on the {111} plane in an FCC lattice produces a 

deformation stacking fault by the process shown in Fig. b. Slip has occurred 

between an A and a B layer. The stacking sequence then becomes ABC AC AB. 

• Comparison of this faulted stacking sequence (Fig. b) with the stacking sequence 

for an HCP structure without faults CACA (Fig. d) shows that the deformation 

stacking fault contains four layers of an HCP sequence.  

 



Continued… 
• Therefore, the formation of a stacking fault in an fcc metal is equivalent to the 

formation of a thin HCP region. 

• Another way in which a stacking fault could occur in FCC metal is by the 

sequence shown in Fig. c. The stacking sequence ABCACBCA is called an 

extrinsic, or twin, stacking fault. The three layers ACB constitute the twin. Thus, 

stacking faults in FCC metals can also be considered as submicroscopic twins of 

nearly atomic thickness. The reason why mechanical twins of microscopically 

resolvable width are not formed readily when FCC metals are deformed is that 

the formation of stacking faults is so energetically favorable. 

• The differences in the deformation behavior of FCC metals are due to the 

differences in stacking-fault behavior. The creation of a region with HCP stacking 

CACA introduces a region with higher free energy than the FCC structure. 

 

 



Continued… 

 

 

 Development of ISF can observe due to the removal of layer B atom from the 
regular stacking sequence. 

 Formation of ESF is due to the insertion of a new atomic layer C into the regular 
stacking sequence.  

 In both cases, the regular stacking sequences of the atomic layers above and 
below the faulted layer remain in the same way. 
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• A stacking fault in a fee metal, when viewed from dislocation theory, is an 

extended dislocation consisting of a thin HCP region bounded by partial 

dislocations (Figure). The nearly parallel partial dislocations tend to repel each 

other, but this is counterbalanced by the surface tension of the stacking fault 

pulling them together. 

 

 

Schematic model of a stacking fault. 



Continued… 

 A full unit dislocation AB with burger vector 𝑏1 has dissociated into two partial 
dislocations BC and BD with burger vector 𝑏2 and 𝑏3, respectively.  

 The dislocation dissociation reaction 𝑏1 → 𝑏2 + 𝑏3 is energetically feasible 
when magnitudically  

 



Continued… 

• The lower the stacking-fault energy the greater the separation between the 

partial dislocations and the wider the stacking fault. Typical values for stacking 

fault energy (SFE) are given in Table 4-6. The data for the stainless steels 

illustrate that SFE is very sensitive to chemical composition. 

• Stacking faults influence the plastic deformation in a number of ways. Metals 

with wide stacking faults (low SFE) strain-harden more rapidly, twin easily on 

annealing, and show a different temperature dependence of low stress than 

metals with narrow stacking faults. 

• Metals with high SFE have a deformation substructure of dislocation tangles 

and cells, while low-SFE metals show a deformation substructure of banded, 

linear arrays of dislocations. 

 

 



Continued… 
DEFORMATION BANDS: 

Inhomogeneous deformation of a crystal  

 

 

Regions of different orientation called deformation bands 

 

• Difference w.r.t. Slip Lines: Slip occurs without restraint in a perfectly 

homogeneous fashion and subsequent polishing the slip lines can be removed. 

Deformation bands occurs in region of different crystallographic orientation in a 

inhomogeneous fashion and can be observed even after repeated polishing and 

etching. 

 

Leads to 
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Why the tendency for the formation of deformation bands is greater in 

polycrystalline specimens? 

Ans: Because the restraints imposed by the grain boundaries make easy for 

orientation differences to arise in a grain during deformation. Usually, the 

deformation bands appear as irregular in shape and elongated in the direction of 

principal strain. 

Why deformation bands have been observed in both FCC and BCC metals, but not 

in HCP metals? 

Ans: Because the shear stress required higher to deform a hexagonal crystal when 

the basal plane is nearly parallel to the crystal axis as per the equation for critical 

resolved shear stress. Hence, difficult to cause orientation difference across the 

individual grain to produce the deformation bands. 

 



Continued… 
KINK BANDS: 

The bucking or kinking, behavior is illustrated in the below Fig. The horizontal lines 

represent basal planes, and the planes designated P are the kink planes at which 

the orientation suddenly changes. Distortion of the crystal is essentially confined to 

the kink band. 

 

 

 

 

Kink planes 

Example: The observation by  Orowan 

that the cadmium (Cd) crystal show 

localized deformation cause  suddenly 

snapping into a tilted position with a 

sudden shortening of the crystal under 

compression loading. 

 



Continued… 
• The study of kink bands by Hess and Barrett showed that kink band can be 

considered to be a simple type of deformation band. 

• Kink bands have also been observed in zinc crystals tested in tension due to a 

non uniform distribution of slip that produce a bending moment to cause kink 

formation. 

 



LECTURE-18 
STRAIN HARDENING OF SINGLE CRYSTALS 

• Definition: The shear stress required to produce slip continuously increases with 

increasing shear strain. The increase in the stress required to cause slip because 

of previous plastic deformation is known as strain hardening, or work hardening.  

 

• Strain hardening is caused by dislocations interacting with each other and with 

barriers which impede their motion through the crystal lattice. 

 

• Hardening due to dislocation interaction is a complicated problem because it 

involves large groups of dislocations and it is difficult to specify group behavior 

in a simple mathematical way. 

 



Continued… 
Dislocation Density (δ): It is a measure of the number of dislocations in a unit 

volume of a crystalline material. It can also be defined as the average dislocation 

length per unit volume.  

• Unit is cm-2 or mm-2 .  

• δ = 105 to 106 cm-2 (= 103 to 104 mm-2) for a good annealed crystal. 

      δ = 1010 to 1012 cm-2 (= 108 to 1010 mm-2) in cold-worked metal.  

• One of the earliest dislocation concepts to explain strain hardening was the idea 

that dislocations pile up on slip planes at barriers in the crystal. 

 



Continued… 
• Dislocation Density (δ): It is a measure of the number of dislocations in a unit 

volume of a crystalline material. It can also be defined as the average dislocation 

length per unit volume.  

• Unit is cm-2 or mm-2 .  

• The dislocation density of a good annealed crystal is 105 to 106 cm-2 (= 103 to 104 

mm-2), while the observed dislocation density in cold-worked metal is 1010 to 

1012 cm-2 (= 108 to 1010 mm-2). 

• One of the earliest dislocation concepts to explain strain hardening was the idea 

that dislocations pile up on slip planes at barriers in the crystal. 

 



Continued… 
Back Stress  (Bauschinger Effect):  

• Back stress is a phenomenon that occurs in materials that exhibit the 

Bauschinger effect, which is a decrease in the yield stress of a material when 

the direction of the stress is reversed. 

• The existence of a back stress was demonstrated experimentally by shear tests 

on zinc single crystals. Zn crystals are ideal for crystal-plasticity experiments 

because they slip only on the basal plane, and hence complications due to 

duplex slip are easily avoided. 

• Offset stress: The larger the offset stress, the larger the Bauschinger effect.  

• Reverse plastic strain: The larger the reverse plastic strain, the larger the 

Bauschinger effect.  



Continued… 
• Bauschinger effect: When a material is deformed, unloaded, and then 

reloaded in the opposite direction, the yield stress decreases. This is because 

the compressive flow stress after tensile prestraining is much smaller than the 

tensile flow stress.  

Fig: Effect of complete reversal of slip direction on 
stress-strain curve. 



Continued… 
• In Fig., the crystal is strained to point O unloaded, and then reloaded in the 

direction opposite to the original slip direction. Note that on reloading the 

crystal yields at a lower shear stress than when it was first loaded, because the 

back stress developed by dislocations piling up at barriers during the first 

loading cycle is aiding dislocation movement when the direction of slip is 

reversed. 

• Furthermore, when the slip direction is reversed, dislocations of opposite sign 

could be created at the same sources that produced the dislocations responsible 

for strain in the first slip direction.  

• Since dislocations of opposite sign attract and annihilate each other, the net 

effect would be a further softening of the lattice. 



Continued… 
SESSILE DISLOCATION 

• The Shockley partial dislocation has its burger vector lying in the plane of the 

fault and hence is glissile. Some dislocations, however, have their Burgers vector 

not lying in the plane of the fault with which they are associated and are 

incapable of gliding, i.e. they are sessile.  

• Since sessile dislocations do not lie on the slip plane of low shear stress, they 

have low mobility and act as a barrier to dislocation motion until the stress is 

increased to a high enough level to break down the barrier. 

• Examples: Stair-rod dislocation, Frank partials, Lomer–Cottrell junction, etc. 

LOMER-COTTRELL BARRIERS: The most important dislocation reaction, which leads 

to the formation of sessile dislocations, is the formation of Lomer-Cottrell barriers 

in FCC metals by slip of dislocations on intersecting {111} planes during duplex slip. 



Continued… 

Reference: Mishra, D.K. et al. Dislocation Interaction and V-Shaped Growth of the Distorted 
Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated 
Copper: A Molecular Dynamics Simulation-Based Study. Trans Indian Inst Met 72, 167–180 
(2019). 

Burger Vectors of following Sessile Dislocations: 

Stair-rod Partials (1/6<110>), Frank Partial (1/3<111>, Hirth Partial (1/3<100>) 
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DISLOCATION FOREST: 

when dislocations moving in 

the slip plane cut through 

other dislocations intersecting 

the active slip plane. The 

dislocations threading through 

the active slip plane are often 

called a dislocation forest, and 

this strain-hardening process is 

referred to as the intersection 

of a forest of dislocations. 

Reference: Mishra, D.K. et al. Dislocation Interaction 
and V-Shaped Growth of the Distorted Structure 
During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-
entropy alloy)-Coated Copper: A Molecular Dynamics 
Simulation-Based Study. Trans Indian Inst Met 72, 
167–180 (2019). 
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JOGS  

• Figure(a) shows that 

dislocation intersection 

results in a small step or jog in 

the dislocation line. Jogs on a 

dislocation restrict its motion 

so that they contribute to 

strain hardening. Jogs are also 

formed by a screw dislocation 

cross slipping from the 

primary slip plane to another 

plane which contains the 

common slip direction (Fig. b). 

Formation of a jog J {a) by a dislocation cutting 
through a screw dislocation as it glides from AB 
to A'B' (b) by part of a screw dislocation line AB 
cross slipping from the primary slip plane PQ 
into the plane 
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 CROSS SLIP 

• Cross-slip is a thermally activated process by which a screw dislocation changes 

its original glide plane to another glide plane which shares the same Burgers 

vector. The phenomenon of cross slip is restricted to screw dislocations. Since 

the line of a screw dislocation and its Burgers vector are parallel, this does not 

define a specific plane as with an edge dislocation (where b is perpendicular to 

the dislocation line). To a screw dislocation, all directions around its axis look the 

same, and it can glide on any plane as long as it moves parallel to its original 

orientation. 

Ref: Clyne TW, Campbell JE. Mechanisms of 
Plastic Deformation in Metals. In: Testing of 
the Plastic Deformation of Metals. 
Cambridge University Press; 2021:43-80 
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STRESS - STRAIN CURVES FOR SINGLE CRYSTALS 

When the stress-strain curves for single crystals are plotted as resolved shear stress 

vs. shear strain, certain generalizations can be made for all fcc metals. Following the 

notation proposed by Seeger, the flow curve for pure-metal single crystals can be 

divided into three stages. 

 

Generalized flow curve for 
fcc single crystals. 
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STAGE – I 

• The region of easy glide is a stage in which the crystal undergoes little strain 

hardening. During easy glide, the dislocations are able to move over relatively 

large distances without encountering barriers. The low strain hardening 

produced during this stage implies that most of the dislocations escape from 

the crystal at the surface. During easy glide, slip always occurs on only one slip 

system. For this reason, stage I slip is sometimes called laminar flow. 

STAGE – II 

• Stage II is a nearly linear part of the flow curve where strain hardening 

increases rapidly. In this stage, slip occurs on more than one set of planes.  

• The length of the active slip lines decreases with increasing strain, which is 

consistent with the formation of a greater number of Lomer-Cottrell barriers 

with increasing strain.  

 



Continued… 
• During stage II, the ratio of the strain-hardening coefficient (the slope of the 

curve) to the shear modulus is nearly independent of stress and temperature, 

and approximately independent of crystal orientation and purity.  

• The fact that the slope of the flow curve in stage II is nearly independent of 

temperature agrees with the theory that assumes the chief strain-hardening 

mechanism to be piled-up groups of dislocations. 

• The average dislocation density in stage II correlates with resolved shear stress 

according to 

𝜏 = 𝜏0 + 𝛼𝐺𝜌1 2  

Where 𝜏0 is the shear stress needed to move a dislocation in the absence of other 

dislocations and a is a numerical constant which varies from 0.3 to 0.6 for different 

fcc and bcc metals. 



Continued… 
STAGE – III 

•  Stage III is a region of decreasing rate of strain hardening.  

• The processes occurring during this stage are often called dynamical recovery.  

• In this region of the flow curve, the stresses are high enough so that 

dislocations can take part in processes that are suppressed at lower stresses.  

• Cross slip is believed to be the main process by which dislocations, piled up at 

obstacles during stage II, can escape and reduce the internal-strain field.  

• The stress at which stage III begins,𝜏3, is strongly temperature-dependent.  

• Also, the flow stress of a crystal strained into stage III is more temperature-

dependent than if it had been strained only into stage II.  

• This temperature dependence suggests that the intersection of forests of 

dislocations is the chief strain-hardening mechanism in stage III. 
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Effect of Crystal Orientation on the flow curve of fcc single crystals 

• Figure shows that crystal orientation can have a very strong effect on the low 

curve of fcc single crystals.  

Effect of specimen orientation on the shape of 
the flow curve for fcc single crystals. 

• When the tensile axis is parallel to 

a <011> direction, one slip system 

is carrying appreciably more shear 

stress than any other and the low 

curve shows a relatively large 

region of easy glide.  

• When the tensile axis is close to a 

<100> or <111> direction, the 

stress on several slip systems is 

not very different and the low 

curves show rapid rates of strain 

hardening. 



LECTURE-19 
DISLOCATION THEORY 

Introduction 

•  A dislocation is the linear lattice defect that is responsible for nearly all aspects 

of the plastic deformation of metals. 

• This chapter is intended to present a more complete treatment of dislocation 

theory. Techniques for observing dislocations in metals are discussed. The effect 

on dislocation behavior of considering real fcc, bcc, or hcp crystal structures are 

considered. 

• The origin of dislocations and the mechanisms for their multiplication are 

discussed. Interaction of dislocations with other dislocations, vacancies, and 

foreign atoms is discussed in some detail. 
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• The object of this chapter is the presentation of the basic geometric and 

mathematical relationships which describe dislocation behavior. 

• These relationships will be used to explain mechanical behavior and 

strengthening mechanisms in subsequent chapters of this book. 

Observation of dislocations 

• The concept of the dislocation was proposed independently by Taylor, Orowan, 

and Polanyi1 in 1934, but the idea lay relatively undeveloped until the end of 

World War II. There followed a period of approximately 10 years in which the 

theory of dislocation behavior was developed extensively and applied to 

practically every aspect of the plastic deformation of metals. 

• Practically all the experimental techniques for detecting dislocations utilize the 

strain field around a dislocation to increase its effective size.  

 



Continued… 

• These experimental techniques can be roughly classified into two categories, 

those involving chemical reactions with the dislocation, and those utilizing the 

physical changes at the site of a dislocation. 

• Chemical methods include etch-pit techniques and precipitation techniques. 

Methods based on the physical structure at a dislocation site include 

transmission electron microscopy of thin films and x-ray diffraction 

techniques. 

• The simplest chemical technique is the use of an etchant which forms a pit at 

the point where a dislocation intersects the surface. Etch pits are formed at 

dislocation sites because the strain field surrounding the dislocation causes 

preferential chemical attack. 
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• Figure shows the excellent resolution obtainable from etch-pit studies on alpha 

brass. Pits only 500 0A (= 50 nm) apart have been resolved. In the region of 

heavy slip shown in this electron micrograph the dislocation density is 1010 cm-2 

(= 108 mm-2). 

 

Etch pits on slip bands in alpha brass crystals 
(5,000 X). 

• A similar method of detecting 

dislocations is to form a visible 

precipitate along the dislocation 

lines. Usually a small amount of 

impurity is added to form the 

precipitate after suitable heat 

treatment. The procedure is 

called "decoration" of 

dislocations. 
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• This technique was first used by Hedges and Mitchell to decorate dislocations in 

AgBr with photolytic silver. It has since been used with many other ionic crystals 

such as AgCl, NaCl, KCl, and CaF2. With these optically transparent crystals this 

technique has the advantage that it shows the internal structure of the 

dislocation lines. 

Hexagonal network of dislocations in 
NaCl detected by a decoration technique 

• Figure shows a hexagonal network of 

dislocations in a NaCl crystal which was 

made visible by decoration. 
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• The most powerful method available today for the detection of dislocations in 

metals is transmission electron microscopy of thin foils. Thin sheet, less than 1 

mm thick, is thinned after deformation by electro polishing to a thickness of 

about 1,000 A (= 100 nm). At this thickness the specimen is transparent to 

electrons in the electron microscope.  

• In conventional transmission electron microscopy, individual dislocation lines 

can be observed because the intensity of the diffracted electron beam is 

altered by the strain field of the dislocation. 

• The width of the diffraction image of a dislocation in a thin foil is about 100 A (= 

10 nm), so that this technique can be used at dislocation densities up to about 

1011 cm-2 (= 109 mm -2). 
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• By means of this technique it has been possible to observe dislocation networks 

(Fig.), stacking faults, dislocation pile-up at grain boundaries, Lomer-Cottrell 

barriers, and many other structural features of dislocation theory. 

Dislocation network in cold-worked 
aluminum (32,500 X). 

• However, this technique is not 

without disadvantages. Since only a 

miniscule volume of material is 

examined with thin films, great care 

must be exerted to obtain a 

representative sample. It is possible to 

alter the defect structure during 

sectioning and polishing to a thin film, 

and dislocation structures may relax in 

a very thin foil.  



Continued… 

• The greatest defect of transmission electron microscopy is that it is not very 

effective in detecting long-range stresses, nor does it give very much 

information about slip line lengths or surface step heights. 

• The dislocation structure of a crystal can be detected by x-ray microscopy. The 

most common techniques are the Berg-Barrett reflection method. 

Burgers vector and the dislocation loop 

• The Burgers vector b is the vector which defines the magnitude and direction of 

slip. Therefore, it is the most characteristic feature of a dislocation.  

• It has already been shown that for a pure edge dislocation the Burgers vector is 

perpendicular to the dislocation line, while for a pure screw dislocation the 

Burgers vector is parallel to the dislocation line. 

 



Continued… 

(a) Macroscopic deformation of a cube produced by glide of an edge dislocation. (b) 
Macroscopic deformation of a cube produced by glide of a screw dislocation. Note 
that the end result is identical for both situations 



Continued… 
• The macroscopic slip produced by the motion of an edge dislocation is shown in 

Fig. a and by a screw dislocation in Fig. b. 

• For an edge dislocation the dislocation line moves parallel to the slip direction 

while the screw dislocation moves at right angles to it. 

 



LECTURE-20 

• Actually, dislocations in real crystals are rarely straight lines and rarely lie in a 

single plane. In general, a dislocation will be partly edge and partly screw in 

character. 

 

Dislocation loop lying in a slip plane 

• For example, in Figure, the 

dislocation loop is pure screw 

at point A and pure edge at 

point B, while along most of its 

length it has mixed edge and 

screw components. Note, 

however, that the Burgers 

vector is the same along the 

entire dislocation loop. 



Continued… 
• A convenient way of defining the Burgers vector of a dislocation is with a 

Burgers circuit. Consider the positive edge dislocation shown in Fig. a. If we 

start at a lattice point and imagine a clockwise path traced from atom to atom 

an equal distance in each direction, we find that at the finish of the path the 

circuit does not close. 

 

Burgers circuits, (a) Around positive edge dislocation; (b) around a right-handed dislocation 



Continued… 

• The closure failure from finish to start is the Burgers vector b of the 

dislocation. (If we had made the Burgers circuit around the dislocation in the 

anticlockwise direction, the direction of the Burgers vector would have been in 

the opposite sense.) 

• Moreover, if we traverse a Burgers circuit about the screw dislocation shown in 

Fig. b, we would find the closure error pointing out of the front face of the 

crystal. This is a right-handed screw dislocation since in traversing the circuit 

around the dislocation line; we advance the helix one atomic plane into the 

crystal. 

 



Continued… 

Cross slip in a face-centered cubic crystal 

• The process of cross slip illustrated in below figure, will serve as an example of 

dislocation loops. In Fig. (a), a small loop of dislocation line with b = a0/2[101] 

is moving on a (111) plane in an fcc crystal.  



Continued… 

• The dislocation loop is pure positive edge at w and pure negative edge at y. At x 

the dislocation is a right-handed screw while at z the dislocation loop is a pure 

left-handed screw dislocation. At some stage (Fig. b), the shear stress causing 

expansion of the loop tends to move the dislocation on the intersecting (111) 

plane.  

• Since the dislocation is pure screw at z, it is free to move on this plane. In Fig. 

(c) the loop has expanded on the second plane, while in Fig. (d) double cross 

slip has taken place as the loop glides back onto the original (111) plane.  



Continued… 
• Note that during the glide of the dislocation on the cross-slip plane only the 

screw component of the loop has moved. Because a dislocation represents the 

boundary between the slipped and unslipped region of a crystal, topographic 

considerations require that it either must be a closed loop or else must end at 

the free surface of a crystal or at a grain boundary.  

• In general, a dislocation line cannot end inside of a crystal. The exception is at 

a node, where three or four dislocation lines meet. At a node two dislocations 

with Burgers vectors b1 and b2 combine to produce a resultant dislocation b3. 

The vector b3 is given by the vector sum of bl and b2. 

• A dislocation with a Burgers vector equal to one lattice spacing is said to be a 

dislocation of unit strength. Because of energy considerations dislocations with 

strengths larger than unity are generally unstable and dissociate into two or 

more dislocations of lower strength.  



Continued… 
• The criterion for deciding whether or not dissociation will occur is base on the 

fact that the strain energy of a dislocation is proportional to the square of its 

Burgers vector.  

• Therefore, the dissociation reaction b1      b2 + b3 will occur when 𝒃𝟏 > 𝒃𝟐
𝟐 +

 𝒃𝟑
𝟐, but not if 𝒃𝟏 < 𝒃𝟐

𝟐 + 𝒃𝟑
𝟐 

• In adding Burgers vectors, each of the corresponding components is added 

separately. Thus b1 + b2 = a0[110] + a0[211] = a0[321]. In adding or subtracting 

components common unit vectors must be used. Thus a0/3[112] + a0/6[11-1] 

must be expressed as a0/6[224] + a0/6[11-1]] = a0/6[333] = a0/2[111]. 

• Example : Determine whether the dislocation dissociation reaction is feasible. 

 

 



Continued… 
• Since this is a vector equation the x, y, and z components of the right-hand side 

of the equation must equal the x, y, and z components of the left side (original 

dislocation). 

 

 



Continued… 

• A dislocation of unit strength, or unit dislocation, has a minimum energy when 

its Burgers vector is parallel to a direction of closest atomic packing in the 

lattice. This agrees with the experimental observation that crystals always slip 

in the close-packed directions.  

• A unit dislocation of this type is also said to be a perfect dislocation because 

translation equal to one Burgers vector produces an identity translation. 

• A unit dislocation parallel to the slip direction cannot dissociate further unless it 

becomes an imperfect dislocation, where a translation of one Burgers vector 

does not result in an identity translation 
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LECTURE-26 
SOLID-SOLUTION STRENGTHENING 

 The introduction of solute atoms into solid solution in the solvent-atom lattice 

invariably produces an alloy which is stronger than the pure metal. 

 There are two types of solid solutions.  

I. If the solute and solvent atoms are roughly similar in size, the solute atoms 

will occupy lattice points (regular positions) in the crystal lattice of the solvent 

atoms. This is called substitutional solid solution. 

II. If the solute atoms are much smaller than the solvent atoms, they occupy 

interstitial positions in the solvent lattice. Carbon, nitrogen, oxygen, hydrogen, 

and boron are the elements which commonly form interstitial solid solutions. 

 The factors which control the tendency for the formation of substitutional solid 

solutions have been uncovered chiefly through the work of Hume-Rothery. 

 



Continued… 
 If the sizes of the two atoms, as 

approximately indicated by the lattice 

parameter, differ by less than 15 

percent, the size factor is favorable 

for solid-solution formation. When 

the size factor is greater than 15 

percent, the extent of solid solubility 

is usually restricted to less than 1 

percent. 

Effect of solute alloy additions on 
stress strain curve 

 Crystal structures of solute and solvent must be similar. Metals which do not 

have a strong chemical affinity for each other tend to form solid solutions. 

While metals which are far apart on the electromotive series (strong affinity 

for each other) tend to form intermetallic compounds. 



Continued… 
 Complete solubility occurs when the solvent and solute have the same 

valency.  

a. The solubility of a metal with higher valence in a solvent of lower valence is 

more extensive than for the reverse situation. For example, zinc is much 

more soluble in copper than is copper in zinc.  

b. This relative-valence effect can be rationalized to a certain extent in terms of 

the electron-atom ratio. For certain solvent metals, the limit of solubility 

occurs at approximately the same value of electron-atom ratio for solute 

atoms of different valence. 

• Finally, for complete solid solubility over the entire range of composition the 

solute and solvent atoms must have the same crystal structure. 

 



Continued… 

Solute atoms can interact with dislocations by the following mechanisms: 

 Stacking-fault interaction 

 Electrical interaction 

 Short-range order interaction 

 Elastic interaction 

 Modulus interaction 

 Long-range order interaction 

 

Long-range i.e. continue to act 
about 0.6 Tm then after relatively 
insensitive to temperature.  

Short-range i.e. strong interactions 
and contribute strongly to flow 
stress at lower temperature. 



Continued… 
Solute atoms can interact with dislocations by the following mechanisms: 

 Stacking-fault interaction: Solute preferentially segregate at SFs in extended 

dislocations to increase separation between dislocations and lowering the SFE. 

 Electrical interaction: Association of charge with solute atoms of dissimilar 

valency to act as charge centers that interact with dislocation dipoles. 

Comparatively these interactions are weaker than elastic and modulus 

interaction. 

 Short-range order (Clustering) interaction: Solute atoms rearranged 

themselves to have more number of dissimilar neighbors than equilibrium 

number. Hence, dislocation interaction cause increase in energy of alloy.  



Continued… 

 Elastic interaction: Mutual interactions of elastic fields of both solute atoms 

and dislocations. This is directly proportional to misfit of the solute.  

 Modulus interaction: Presence of solute atoms alter the modulus of crystal. 

This is led by the change in shear modulus of solute atoms wrt matrix. If it 

smaller than matrix, then cause strong attraction (interaction) between solute 

and matrix. 

 Long-range order interaction: Arise in alloys which form superlattice that is a 

long range periodic arrangement of dissimilar atoms. The movement of atoms 

through a superlattice cause development of anti-phase boundaries (APB). 

 



Continued… 
STRENGTHENING FROM FINE PARTICLES 

 Small second-phase particles distributed in a ductile matrix are a common 

source of alloy strengthening. In dispersion hardening the hard particles are 

mixed with matrix powder and consolidated and processed by powder 

metallurgy techniques. However, very many alloy systems can be strengthened 

by precipitation reactions in the solid state. 

 Precipitation hardening or age hardening: It is produced by solution treating 

and quenching an alloy in which a second phase is in solid solution at the 

elevated temperature but precipitates upon quenching and aging at a lower 

temperature. Example: Age-hardening aluminum alloys and copper-beryllium 

alloys are common examples.  



Continued… 
 For precipitation hardening to occur, the second phase must be soluble at an 

elevated temperature but must exhibit decreasing solubility with decreasing 

temperature. By contrast, the second phase in dispersion-hardening systems 

has very little solubility in the matrix, even at elevated temperatures. 

 Decrease in solubility with temperature limits the use of precipitation-

hardening alloys. On the other hand, the dispersion strengthened alloy 

systems by mixing fine metallic powders and second phase particles (oxides, 

carbides, nitrides, etc.) and consolidated them via powder metallurgy route 

make it thermally stable at higher temperatures. Further, it has more resistant 

to recrystallization and grain growth. 

FIBER STRENGTHENING 

• Materials of high strength, and especially high strength-to-weight ratio, can be 

produced by incorporating fine fibers in a ductile matrix.  

• The fibers must have high strength and high elastic modulus while the matrix 

must be ductile and nonreactive with the fibers. Because of their very high 

strength, whiskers of materials such as Al203 have been used with good 

results, but most fiber- strengthened materials use fibers of boron or graphite 

or metal wires such as tungsten.  

 



Continued… 
• The fibers may be long and continuous, or they may be discontinuous. Metals 

and polymers have been used as matrix materials. Glass-fiber-reinforced 

polymers are the most common fiber-strengthened materials. Fiber-reinforced 

materials are an important group of materials generally known as composite 

materials. 

 

 

 



LECTURE-27 

MARTENSITE STRENGTHENING 

• The transformation of austenite to martensite by diffusion less shear-type 

transformation in quenching of steel is one of the most common strengthening 

processes used in engineering materials.  

• Although martensitic transformations occur in a number of metallurgical 

systems, only the alloys based on iron and carbon show such a pronounced 

strengthening effect.  

 

 

 



Continued… 
• Figure shows how the 

hardness of 

martensite varies with 

carbon content and 

compares this degree 

of strengthening with 

that achieved in 

dispersed aggregates 

of iron and cementite. 

 

Hardness of various transformation products in 
steel. 



Continued… 
• The high strength of martensite implies that there are many strong barriers to 

dislocation motion in this structure. The complexity of the system allows for 

considerable controversy and hardening mechanisms abound, but it appears 

that there are two main contributions to the high strength of martensite. 

• The conventional martensite has a plate structure with a unique habit plane 

and an internal structure of parallel twins each about 0.1 µm thick within the 

plates.  

• The other type of martensite structure is a block martensite containing a high 

dislocation density of 109 to 1010 mm-2, comparable to that in a highly 

deformed metal. Thus, part of the high strength of martensite arises from the 

effective barriers to slip provided by the ine twin structure or the high 

dislocation density. 

 

 



Continued… 
• The second important contribution to the strength of martensite comes from 

the carbon atoms. Figure shows that the hardness of martensite is very 

sensitive to carbon content below 0.4 percent. On rapidly transforming from 

austenite to ferrite in the quench, the solubility of carbon in iron is greatly 

reduced. The carbon atoms strain the ferrite lattice and this strain can be 

relieved by redistribution of carbon atoms by diffusion at room temperature. 

COLD-WORKED STRUCTURE 

• Plastic deformation which is carried out in a temperature region and over a 

time interval such that the strain hardening is not relieved is called cold-work. 

 

 



(a) Deformed to 10 percent strain. Beginning of cell formation with dislocation tangles; 
(b) deformed to 50 percent strain. Equilibrium cell size with heavy dislocation density in 

cell walls  

Continued… 



Continued… 
• Plastic deformation produces an increase in the number of dislocations, which 

by virtue of their interaction results in a higher state of internal stress. An 

annealed metal contains about 104 to 106 dislocations per mm2, while a 

severely plastically deformed metal contains about 1010 mm-2.  

• Strain hardening or cold work can be readily detected by x-ray diffraction, 

although detailed analysis of the x-ray patterns in terms of the structure of 

the cold-worked state is not usually possible. 

STRAIN HARDENING 

• Strain hardening or cold-working is an important industrial process that is 

used to harden metals or alloys that do not respond to heat treatment.  

• The rate of strain hardening can be gaged from the slope of the low curve.  

 

 



Continued… 
• Generally, the rate of strain hardening is lower for hcp metals than for cubic 

metals. Increasing temperature also lowers the rate of strain hardening.  

 

 

Variation of tensile properties 
with amount of cold-work. 

• For alloys strengthened by 

solid-solution additions the 

rate of strain hardening 

may be either increased or 

decreased compared with 

the behavior for the pure 

metal.  



Continued… 

• However, the final strength of a cold-worked solid-solution alloy is almost 

always greater than that of the pure metal cold-worked to the same extent. 

• Figure shows the typical variation of strength and ductility parameters with 

increasing amount of cold-work.  

• Since in most cold-working processes one or two dimensions of the metal are 

reduced at the expense of an increase in the other dimensions, cold-work 

produces elongation of the grains in the principal direction of working.  

• Severe deformation produces a reorientation of the grains into a preferred 

orientation. In addition to the changes in tensile properties shown in Fig. , 

cold-working produces changes in other physical properties. 



Continued… 
• A high rate of strain hardening implies mutual obstruction of dislocations 

gliding on intersecting systems. This can come about  

 (1) through interaction of the stress fields of the dislocations,  

 (2) through interactions which produce sessile locks, and  

 (3) through the interpenetration of one slip system by another (like 

 cutting trees in a forest) which results in the formation of dislocation 

 jogs. 

ANNEALING OF COLD-WORKED METAL  

• The cold-worked state is a condition of higher internal energy than the 

undeformed metal. Although the cold worked dislocation cell structure is 

mechanically stable, it is not thermodynamically stable.  

 



Continued… 

• A high rate of strain hardening implies mutual obstruction of dislocations 

gliding on intersecting systems. This can come about  

 (1) through interaction of the stress fields of the dislocations,  

 (2) through interactions which produce sessile locks, and  

 (3) through the interpenetration of one slip system by another (like 

 cutting trees in a forest) which results in the formation of dislocation 

 jogs. 
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ANNEALING OF COLD-WORKED METAL  

• The cold-worked state is a condition of higher internal energy than the 

undeformed metal. Although the cold worked dislocation cell structure is 

mechanically stable, it is not thermodynamically stable.  

• With increasing temperature the cold-worked state becomes more and more 

unstable. Eventually the metal softens and reverts to a strain-free condition.  

• The overall process by which this occurs is known as annealing. Annealing is 

very important commercially because it restores the ductility to a metal that 

has been severely strain-hardened.  

 



Continued… 

• Therefore, by interposing annealing operations after severe deformation it is 

possible to deform most metals to a very great extent. 

• The process of annealing can be divided into three fairly distinct processes: 

recovery, recrystallization, and grain growth.  

• The below figure will help to distinguish between these processes. Recovery is 

usually defined as the restoration of the physical properties of the cold-

worked metal without any observable change in microstructure.  

 



Continued… 

Schematic drawing indicating recovery, recrystallization, and grain growth and 
chief property changes in each, region. 



Continued… 
• Electrical conductivity increases rapidly toward the annealed value during 

recovery, and lattice strain, as measured with x-rays, is appreciably reduced. 

The properties that are most affected by recovery are those which are 

sensitive to point defects.  

• The strength properties, which are controlled by dislocations, are not affected 

at recovery temperatures. An exception to this is single crystals of hcp metals 

which have deformed on only one set of planes (easy glide) 

• Recrystallization is the replacement of the cold-worked structure by a new set 

of strain-free grains. 

• Recrystallization is readily detected by metallographic methods and is 

evidenced by a decrease in hardness or strength and an increase in ductility. 

The density of dislocations decreases considerably on recrystallization, and all 

effects of strain hardening are eliminated.  

 

 



Continued… 
• The stored energy of cold-work is the driving force for both recovery and 

recrystallization. If the new strain-free grains are heated at a temperature 

greater than that required to cause recrystallization, there will be a progressive 

increase in grain size. 

 

Changes in microstructure of cold-worked 70-30 brass with annealing, (a) 
Cold-worked 40 percent; (b) 440oC, 15 min; (c) 5750C, 15 min (150X) 



Continued… 
• The driving force for grain growth is the decrease in free energy resulting from 

a decreased grain-boundary area due to an increase in grain size.  

• Above figure shows the progression from a cold-worked microstructure to a 

fine recrystallized grain structure, and finally to a larger grain size by grain 

growth. 

 Six main variables influence recrystallization behavior. They are  

(1) Amount of prior deformation,  

(2) Temperature,  

(3) Time,  

(4) Initial grain size,  

(5) Composition, 

(6) Amount of recovery or polygonization prior to the start of recrystallization. 

 

 



Continued… 
• Because the temperature at which recrystallization occurs depends on the 

above variables, it is not a fixed temperature in the sense of a melting 

temperature. 

• For practical considerations a recrystallization temperature can be defined as 

the temperature at which a given alloy in a highly cold-worked state 

completely recrystallizes in 1 h.  

• Because the driving force for grain growth is appreciably lower than the driving 

force for recrystallization, at a temperature at which recrystallization occurs 

readily grain growth will occur slowly. However, grain growth is strongly 

temperature-dependent, and a grain-coarsening region will soon be reached in 

which the grains increase in size very rapidly. 
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The relationship of the above variables to the recrystallization process can be 

summarized as follows: 

1. A minimum amount of deformation is needed to cause recrystallization. 

2. The smaller the degree of deformation, the higher the temperature required to 

cause recrystallization. 

3. Increasing the annealing time decreases the recrystallization temperature. 

However, temperature is far more important than time. Doubling the annealing 

time is approximately equivalent to increasing the annealing temperature 10oC. 

4. The initial grain size depends chiefly on the degree of deformation and to a 

lesser extent on the annealing temperature. The greater the degree of 

deformation, and the lower the annealing temperature, the smaller the 

recrystallized grain size. 

 

 



Continued… 

5. The larger the original grain size, the greater the amount of cold-work required 

to produce an equivalent recrystallization temperature. 

6. The recrystallization temperature decreases with increasing purity of the metal. 

Solid-solution alloying additions always raise the recrystallization temperature. 

7. The amount of deformation required to produce equivalent recrystallization 

behavior increases with increased temperature of working. 

8. For a given reduction in cross section, different metalworking processes, such as 

rolling, drawing, etc., produce somewhat different effective deformations. 

Therefore, identical recrystallization behavior may not be obtained. 

 

 



Continued… 
Differences between Crystalline and Non-crystalline Materials 

• In crystalline materials, permanent deformation is generally related to 

identified defects such as dislocation, atom diffusion involving voids, vacancies, 

etc. 

• The macroscopic deformation is similar in both crystalline and non-crystalline 

(i.e. behave in a brittle manner under high strain rate and low temperature) 

• In non-crystalline materials, permanent deformation is often related to 

localized slip and/or viscous flow (low stress or high temperature) 

• The non-crystalline arrangement is thermodynamically stable above material’s 

Tm. The crystalline just opposite (below the Tm is more stable) Crystalline 

arrangement is more ordered ⇒ less molar volume. 
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DEFORMATION OF NON-CRYSTALLINE MATERIALS: 

• In non-crystalline materials, permanent deformation is usually related to 

viscous flow or localized slip. 

• Viscous flow is occurred due to permanent movement of atoms from different 

parts of the material. 

• Glass transition temperature is a major factor in the determination of non-

crystalline material deformation. 

• The glass transition is the reversible transition in amorphous materials from a 

hard and relatively brittle state into a molten or rubber-like state. 



Continued… 
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Continued… 
• Viscous flow is due to permanent displacement of atoms in different locations 

within the material. 

 

• Glass transition temperature is an important factor to the deformation in 

noncrystalline material. 

 

• Stress, temperature and free volume are key factors to a deformation 

mechanism. 

 

• Shear band is another deformation mechanism in non-crystalline material –

crazing. 



LECTURE-30 

Deformation of Metallic Glasses 

• This is a deformation mechanism map. 

 

• Three distinct regions: elastic, viscoelastic and viscous regions. 

 

• Heterogeneous deformation at high stress and low temperature. 

 

• Homogeneous deformation at low stress and low temperature. 

 

• At high stresses and low temperatures, permanent deformation is associated 
with shear bands. 
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Continued… 
DEFORMATION OF POLYMERS: 

• A polymer is a large molecule composed of repeating monomers. These sub-

units are typically connected by covalent chemical bonds. Example: proteins, 

rubber, polythenes etc. 

 

• Polymers have different elastic properties than metals. Their elastic moduli are 

very small when compared to those of metals. 

 

• Polymers are undergone large deformation without rupture or can still return 

to their original shape. 

 

• Further, polymers’ elastic modulus is increased with temperature. 



Continued… 
Deformation in Ceramic:  

Ceramics Properties: 

• High hardness, high elastic modulus, low ductility. 

• High dimensional stability, Good wear resistance. 

• High resistance to corrosion and chemical attack. 

• High weather resistance, High melting point, High working temperature. 

• Low thermal expansion, Low to medium thermal conductivity 

• Good electrical insulation, Low to medium tensile strength 

• High compressive strength, Medium machinability 

• Brittleness, Poor impact strength, Low thermal shock resistance 
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Continued… 
Crystal Structures 

• Ceramic bonds are usually mixed of covalent and ionic with a proportion that 

depends on the type of ceramics.  

 

• The ionic character is a function of difference in electronegativity between 

cations and anions.   

 

• Covalent bonds are involved with valence electrons sharing.   

 

• Ionic crystals are involved with cations such as alkalis or alkaline-earths and 

anions such as halogens  or oxygen. 



Continued… 

Defects in Ceramic: 

•  It mainly concludes impurities and point defects whose development is mostly 

affected by charge neutrality. 

 

• Non-stoichiometry in ceramic refers to compositional change of elements. 

 

• Moreover the charge neutrality includes the Frenkel and Schottky defects, 

where Frenkel defect is a interstitial-vacancy pair of cations and Schottky-

defect refers to a pair of neighborhood cation and anion vacancies.  



Continued… 

• Impurity atoms in the lattice is the condition of charge maintained. The 

electronegative impurities are usually substitute the electropositive 

substitutional impurities or lattice anions.  

 

• More likely defects will appear in the place of imbalance in impurities charge. 

 

Dislocations in Ceramics 

• Limited slip systems, so facing difficulties during activation and further the 

Burgers vectors are very large. So, dislocation climb in terms of diffusion is 

frequently observed. 



QUIZ TEST-6 
Q.1 – How dispersion hardening takes place, explain. 

 

Q.2 – How high rate of strain hardening can be achieved? 

 

Q.3 – What is main driving force for recovery and recrystallization 

 

Q.4 –State the Differences between Crystalline and Non-crystalline Materials. 

 

Q.5 –What happens in metallic glasses at high stresses and low temperatures? 

Assignment 

Briefly explain the different strain hardening components in polycrystalline 

material. 
43 
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